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Turbo codes have been deployed in many cutting-edge 
technologies because they can achieve very high coding 
gains. Turbo decoders deploy at least two Soft-Input-Soft-
Out (SISO) decoders, which operate iteratively to 
incorporate their results to conclude the output. The soft 
outputs from the used constituent SISO decoders develop 
gradually along the iterations. This development is studied 
and analyzed in this work to understand the dynamics 
leading to the results. Histograms statistically group and 
visualize the soft results for further analysis and study. A 
method is proposed to evaluate the decoding performance 
based on the density of the values of the soft outputs within 
the histogram. Results show that the performance is 
inversely related to the ratio of the values of the soft outputs 
within the near-zero bins within the histogram. The 
proposed method can be deployed at the decoder to provide 
an early indication of the reception and whether it has the 
potential to be correctly decoded or not. This early decision 
can save the decoding resources.  
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1.Introduction 
Turbo codes are error-correcting codes that have 
revolutionized digital communication systems. 
They offer exceptional performance in terms of 
error correction and data throughput. Turbo 
codes can achieve extremely low bit error rates, 
even in challenging communication 
environments, making them ideal for satellite 
communications, mobile phones, and digital 
video broadcasting applications. 
The performance of turbo codes has been the 
subject of many works since its inception. The 
superb performance of turbo codes comes at the 
price of requiring high processing power and 
considerable latency [1]. For example, numerous 
efforts have been devoted to optimizing and 
speeding up the decoding [2-6]. In [7] Turbo 
codes have been studied from the digital signal 
processing perspective and show how the 
number of iterations affects the mean power of 
the noise in the decoded message. The 
performance of turbo codes has been studied for: 
OFDM [8], MIMO-based DVB-T2 [9], 5G [10], 6G 
[11, 12], and many other technologies like [13, 

14]. Soft output Viterbi algorithm has been 
studied for turbo codes in [15]. The parity-check 
matrix of Turbo codes is improved in [16]. Turbo 
coded-spatial modulation scheme based on code-
matched interleaved is studied for multiple input 
multiple output antenna systems in [17]. 
Different structures have been studied in [18] to 
measure the performance of turbo codes. Turbo-
based encryption and coding scheme is proposed 
in [19] to improve reliability and security for the 
MIMO-OFDM wireless communication systems. 
In [20], the turbo code is studied under channels 
with inter-symbol interference. 

2. System Structure 

2.1. Encoding 
Turbo codes are also called Parallel Concatenated 
Convolutional Codes (PCCC), as they are 
constructed by concatenating two (or more) 
convolutional codes separated by an interleaver 
in parallel. The interleaved permutes the data 
before encoding so that the two generated codes 
are statistically uncorrelated. This helps spread 
errors and improves the decoding process. The 
conventional configuration for turbo codes 
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includes two identical systematic convolutional 
encoders and an interleaved, as depicted in 
Figure 1. The input to one encoder is the original 
data vector 𝐌, and the input to the other one is 
the interleaved data vector �̃�. Accordingly, the 𝑖th 

encoder produces the parity bits 𝐏(𝑖). The 
transmission is constructed by multiplexing the 
original data, the parity bits from both encoders, 
and the termination bits. The latter is optional to 
be included in the transmission. However, these 
bits improve the decoding [21, 22]. Data 
puncturing is possible to reduce the transmission 
rate. 

2.2. Decoding 
Turbo codes employ algorithms for iterative 
decoding, where the decoder repeatedly 
processes the received data using updated 
information from previous iterations to improve 
its decoding performance. These algorithms and 
the parallel concatenation structure have 
enabled turbo codes to achieve remarkable 
results in various applications. 
The received signal is first demultiplexed to its 
principal components: the received data bits. 𝐘, 

the received parity bits for the 𝑖th decoder 𝐑(𝑖), 
and possibly the termination bits. These vectors 
are used to construct the input to each decoder. 
The conventional turbo receiver, depicted in 
Figure 2, involves two SISO decoders. They run 
the BCJR algorithm [23], which is a maximum-
likelihood-decoder. The decoding process of the 
convolutional code is performed with the aid of 
the a priori information passed from other 
decoders. Since the original data is assumed to be 
independent and identically distributed, the 
initial values for this a priori information are set 
to zeros. After each decoding process, the 
deployed SISO decoders generate an LLR (Log-
likelihood-Ratio). It is a numeric value per the 𝑗th 
bit that is considered the soft output 𝐿𝑗 . The 

absolute value this measure reflects the level of 
‘confidence’ the decoder has about decoding the 

𝑗th bit. The higher the absolute value the higher 
the reliability of the decoding of that bit. 
The extrinsic information from the 𝑖th SISO 

decoder per the 𝑗th bit is denoted here as 𝐸𝑗
(𝑖). 

This information is passed to the other SISO 
decoder to be considered a priori for its next 
decoding phase. For turbo decoders comprising 
two SISO decoders, a decoding iteration is 
completed after both decoders generate their soft 

outputs. We denote the vector. E𝑘
(𝑖) as the vector 

of individual extrinsic information values 
generated by the 𝑖th SISO decoder at the iteration 
index 𝑘. It is extracted from the vector of LLRs at 

the 𝑘th iteration 𝐋𝑘
(𝑖) after subtracting the received 

values for the bits and the used extrinsic 
information from the previous iteration. For 
example, after completing the decoding process 
performed by the 1st SISO decoder at the 𝑘th 
iteration, the extrinsic information is computed 

as in equation (1). The vector E𝑘
(1) must be 

interleaved (denoted as �̃�𝑘
(1)) before it can be 

used as a priori by the second SISO decoder. �̃�𝑘
(1) 

is used to decode the inter-leaved data set 𝐘 after 

is combined with 𝐏(2). The generated LLRs 𝐋𝑘
(2) 

are used to extract 𝐄𝑘
(2) as in equation (2). The 

resulted 𝐄𝑘
(2) is passed back to the 1st decoder 

after it has been deinterleaved. 

E𝑘
(1) = 𝐋𝑘

(1) − 𝐘 − 𝐄𝑘−1
(2)  (1) 

𝐄k
(2) = 𝐋k

(2) − 𝐘− �̃�k
(1) (2) 

The process is repeated iteratively, with the 
decoders exchanging extrinsic information until a 
“satisfactory” decoding result is achieved. One 
way of marking the end of this iterative decoding 
is reaching the “convergence”. This point is 
defined as the situation when the turbo decoder 
generates the same hard output at two 
consecutive iterations. At this point, it is assumed 
that no further improvement is expected where 
the decoder keeps iterating. Terminating the 
iterative loop at this point is beneficial for 
preserving resources. Such a decision is 
determined by what is called an Early Stopping 
rule. In some cases, especially at low SNRs, the 
turbo decoder is unlikely to reach convergence, 
as the reception is mostly severely corrupted by 
noise. In such cases, the decoding process keeps 
iterating up to the maximum number of iterations 
allowed for the selected configuration. 

3. Simulation 
For the simulation deployed for this work, we 
consider the configuration of LTE turbo codes, 
consisting of two rate-half-RSC encoders and a 
quadratic polynomial interleaved. The block size 
is set to 512 bits. The encoders have feedforward 
and feedback polynomials of (15)8 and (13)8 [24]. 
We use the Max* Log-MAP algorithm [25] for the 

 
Figure 1. The Turbo Encoder. 

 
Figure 2. The Turbo Decoder. 
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SISO decoders. The decoder iterates up to 12 
times. The early stopping rule [26] is used to 
facilitate the simulation. The simulation of this 
work was implemented in MATLAB. 

4. Results and Discussion 
The speed of LLR development along the 
iterations is mainly affected by the level of 
corruption the received data endures and the 
location of these corrupted bits. At high SNRs, the 
decoder is likely to reach the convergence fast 
and the reception to be correctly decoded. The 
opposite is true: severely corrupted blocks are 
unlikely to reach convergence and will likely be 
decoded with errors. In this work, we perform the 
simulation of running the decoding process at 
different SNRs, ranging from 𝐸𝑏/𝑁0 = 0dB up to 
2dB, to cover the range from a very- low to a high 
SNR. To compare the turbo code's performance at 
the selected SNRs, we choose to simulate 1,000 
blocks. These blocks are generated randomly as 
binary, coded/decoded into turbo code, and 
applied to randomly generated noise at the given 
SNR. After each iteration, the results of these 
blocks and the generated LLRs are studied here 
for analysis and discussion. 
The generated LLRs by the second SISO per bit 
per iteration are stored in a 3-dimensional 
matrix. We can present these LLRs using a 
histogram, as in Error! Reference source not 
found. to Figure 7. This illustration helps 
visualize these random-like values into 
meaningful forms. For consistency of the 
comparison, we divide these histograms into 24 
bins. The edges of these bins start from −60 to 
top 60 with step size 5. It is also important to 
draw these plots at the same scale. We draw the 
histogram of all the generated LLRs in each figure 
at the indicated iteration index per SNR. 
For successful decoding, the absolute value of an 
individual LLR grows along the iteration. 
Convergence is considered when that value does 
not change the sign and/or value for further 
iterations. On the other hand, at the small SNRs 
(in this paper, they are 0 and 0.5 dB), most LLRs 
do not grow in value significantly as the iteration 
progresses. This is caused by the fact that almost 
all the decoded blocks contain many errors. 
Hence, the turbo decoder does not reach 
convergence for them. This is apparent Error! 
Reference source not found., where the values 
of the LLRs are virtually unchanged along the 
iterations. The reason for this is that the 
reception is so severely corrupted with noise that 
the decoder cannot develop constructive soft 
outputs. This case also appears in Error! 
Reference source not found.. However, the 
decoder here can develop a few LLRs that are less 
corrupted by noise than the rest of the block. 
Although all the LLRs start from zero as initial 
values, the values of almost all these LLRs remain 
small and around zero along the iterations, which 

reflects unreliable decoding for that bit. This 
explains the low probability of error at small 
SNRs. 
As the SNR increases, the number of errors at the 
decoding decreases. This can be shown by Error! 
Reference source not found. to Figure 7. The 
SNR increase increases the number of received 
blocks with manageable noise corruption. The 
growth of the LLRs within these blocks per 
iteration becomes recognizable. Ultimately, they 
reach convergence. Decoding these blocks results 
in a small number of error bits per block. In these 
figures, the values of the LLRs drastically increase 
as the iterative decoding progresses. This is 
evident by the fact that the key feature of the 
turbo decoder is that it regenerates new outputs 
after each iteration based on values gathered 
from the previous iteration. These figures show 
that most LLRs increase in value as the SNR 
increases and move away from zero. In the late 
iterations, most of the LLRs have converged. As 
the plots in Error! Reference source not found. 
to Figure 7 The generated LLRs for converging 
blocks grow in value along the iterations. At the 
start, the histogram of these LLRs is concentrated 
at and around zero. For successful decoding, the 
histogram of these values emerges into two 
groups (one at each sign) as the iteration index 
increases. At convergence, these groups are 
virtually isolated from each other. This is 
especially true for large SNRs, where the 
decoding will likely converge within a few 
iterations. On the other hand, the histogram of 
the results at low SNRs remains clustered around 
zero. Even when they start to group away from 
zero, they are not separate as many LLRs have 
absolute values less than ~10. 
Most blocks reach convergence when the SNR is 
high for successful decoding. This means the 
number of blocks within the histogram bins 
around zero is small, or even zero. As Error! 
Reference source not found. to Figure 7 show, 
this is achieved early in terms of the number of 
performed iterations. At mid-range SNRs, this is 
also achieved but mostly after more iterations are 
completed [27, 28]. In the last case, where the 
SNR is low, most LLRs end with small values 
around zero. Successful decoding is associated 
with large values for the generated LLRs, and 
small to null density of LLRs around zero. In this 
work, we present the method for measuring the 
performance by counting the number of LLRs per 
the decoded block with values within the 
histogram bins around the zero. The edges of 
these two bins are −5 to 0 and 0 to 5. To visualize 
these cases, we plot the ratio of the number of 
LLRs at the bins around zero (−5 to 0 and 0 to 5) 
to the total number of LLRs per block (in this 
work it is 512) per the whole simulated blocks 
(here 1000 blocks) after the last iteration is 
completed (here it is after the 12th iteration). 
These ratios are plotted in Figure 8. 
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Figure 3. Histogram of all the generated 𝐿𝑗  per iteration at 𝐸𝑏 𝑁0⁄ = 0dB. 

 
Figure 4. Histogram of all the generated 𝐿𝑗  per iteration at 𝐸𝑏 𝑁0⁄ = 0.5dB. 

 
Figure 5. Histogram of all the generated 𝐿𝑗  per iteration at 𝐸𝑏 𝑁0⁄ = 1.0dB. 
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All these curves show that the number of near-
zero-LLRs decreases as the iteration index 
increases. However, the rate of this decrease is 
directly related to SNR. The reduction is slightly 
at low SNRs and becomes faster as the SNR 
increases. This ratio is high at the start of 
decoding (the 1st iteration) since the decoder 
starts from zero a priori values, which are 
updated after each iteration. At low SNRs, the 
number of LLRs whose values are very small 
(around zero) virtually do not change, even as the 
iteration proceeds. This is because the noise 
levels of the received blocks exceed the capability 
of correction the turbo decoder can provide. As 
the SNR increases, the values of the LLRs increase 
along with the iterations. This figure shows the 
reduction of the ratio of the LLRs with near-zero 
values as the iteration index increases. The speed 
of this reduction is directly proportional to the 

SNR. This ratio drastically decreases at high SNRs 
at early stages of the iterative decoding. 
We can incorporate the above results to examine 
the overall turbo code performance for the 
maximum number of iterations allowed per 
decoding. For the selected iteration indices, 
Figure 9 and Figure 10 plot the probability of 
frame error (Frame Error Rate FER) and the 
probability of bit error (Bit Error Rate BER) 
respectively. FER is the measure of decoding 
fidelity, the number of blocks correctly decoded 
without any error at the given SNR. The BER 
reflects the total correctly decoded bits among 
the whole transmission (which is here 1000 
blocks times 512 bits per block). We compute 
FER and BER at different numbers of iterations. It 
is apparent in these figures that the more 
iterations the decoder performs, the better the 
performance can be achieved. 
 

 
Figure 6. Histogram of all the generated 𝐿𝑗  per iteration at 𝐸𝑏 𝑁0⁄ = 1.5dB. 

 
Figure 7. Histogram of all the generated 𝐿𝑗  per iteration at 𝐸𝑏 𝑁0⁄ = 2.0dB. 
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First, we can review the histograms (a) from the 
figures. Error! Reference source not found. to 
Figure 7, which are the decoding results after 
only one iteration, and relate them to the curve 1 
in Figure 9 and Figure 10. At this iteration, the 
turbo decoder has not achieved any respected 
results. This is especially obvious at low to mid 
SNRs. The progress of the iterative decoding 
improves the results, as it is clear from later cases 
in Error! Reference source not found. to Figure 
7. For example, if we compare the results of plots 
(c) to (a) in these figures, we can see the 
reflection clear in the curve 3 compared to 1 in 
Figure 9 and Figure 10. This improvement 
continues as the number of iterations increases. 
The ‘best’ results the decoder can reach are 
plotted in histogram (l) in the figures Error! 
Reference source not found. to Figure 7. Their 
corresponding performance curves is labeled 12 
in Figure 9 and Figure 10. 
All the plots in Error! Reference source not 
found. to Figure 7 The results show that the 
decoder reaches convergence at high SNRs after 
few iterations. This means that without an early 
stopping rule, the decoder performs unnecessary 
processing that does not lead to significant 
improvement. 
Another way to present the gathered results is 
the Figure 11. The curves in this chart, we plot the 
number of LLRs within the near-the-zero bins as 
a function of 𝐸𝑏 𝑁0⁄  at each iteration index. These 
curves show the direct inverse relation between 
the number of LLRs near zero and the SNR and 
the iteration index. This chart shows that the 
number of LLRs within the near-zero-bins can be 
a reliable performance measure. 
The proposed method can indicate the 
development of the soft output. As the discussed 
figures show, the decoder has a better chance of 

 
Figure 8. Density of LLRs located at histogram bins 

around the zero (|𝐿𝑗| ≤ 5) per 𝐸𝑏 𝑁0⁄  for the 

indicated iteration index. 

 
Figure 9. FER at the indicated iteration index. 

 
Figure 10. BER at the indicated iteration index. 

 
Figure 11. The density of LLRs located at histogram 

bins around the zero (|Lj| ≤ 5) per iteration index 

for the indicated SNRs (Eb N0⁄ ). 
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correct decoding when the number of LLRs 
within the bin around 0 decreases along the 
iterations. If this number does not change 
considerably, the decoder is unlikely to be able to 
decode the received message correctly. So, saving 
the decoding resources and initiating the 
retransmission request can be beneficial. 

5. Conclusion 
Turbo codes are highly effective for data 
transmission because they can achieve 
significant error correction. They use multiple 
decoders that interact with each other repeatedly 
to refine the decoded data. This study 
investigates how the quality of the decoded data 
improves over the iterations. By examining the 
distribution of decoded soft values using 
histograms, we can better visualize and 
understand this progress. We propose a method 
to evaluate and predict the decoding 
performance based on the distribution of 
generated soft values within the histogram. 
Results show that the decoder's effectiveness is 
inversely related to the number of soft-generated 
outputs near zero. The proposed method can be 
implemented within the decoder to provide an 
early indication of whether the reception has the 
potential to be accurately decoded. This early 
decision can help conserve decoding resources. 
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