
Anbar Journal of Engineering Science (AJES) Vol. 16 , No. 1 (2025) , pp. 21 ~ 35

P-ISSN: 1997-9428 ; E-ISSN: 2705-7440 DOI: http://doi.org/10.37649/aengs.2025.156372.1120

University of Anbar

Anbar Journal of Engineering Science

journal homepage: https://ajes.uoanbar.edu.iq/

* Corresponding author: Ali Hasan Hussein E-mail@ali.hussien@epu.edu.iq ; +9647504148774

Optimizing Cloud-Edge Integration for Task Scheduling in Smart

Manufacturing Lines: A Multi-objective Method

Ahmed Najat Ahmeda, Mohammed Adamb, Ari Taha Guronc, Ali Hasan Husseind

aDepartment of Information Technology, College of Engineering, University of Lebanese French, Erbil, Iraq
Email: a.afandy@lfu.edu.krd; ORCID: https://orcid.org/0000-0003-0116-8377

bDepartment of Information Technology, College of Engineering, University of Lebanese French, Erbil, Iraq
Email: mohammed.adam@lfu.edu.krd; ORCID: https://orcid.org/0000-0002-1343-1163

cDepartment of Computer Science, Faculty of Science and Engineering, University of Bayan, Erbil, Iraq
Email: ari.taha@bnu.edu.iq; ORCID: https://orcid.org/my-orcid?orcid=0009-0000-8160-5834

dDepartment of Management Information Systems, Technical Administrative Institute, Erbil Polytechnic University, Erbil, Iraq
Email: ali.hussien@epu.edu.iq; ORCID: https://orcid.org/my-orcid?orcid=0000-0001-5220-3318

PAPER INFO

ABSTRACT

Paper history

Received: 05/1/2025

Revised: 09/2/2025

Accepted: 16/02/2025

The convergence of cloud and edge computing in smart
manufacturing offers significant potential for improving
efficiency in Industry 4.0. However, task scheduling in this
context remains a complex, multi-objective challenge. This
study introduces a novel Cloud-Edge Smart Manufacturing
Architecture (CESMA), leveraging a hybrid approach that
integrates NSGA-II and the Improved Monarch Butterfly
Optimization (IMBO) algorithms. The combination utilizes
NSGA-II's global search and non-dominated solution
capabilities with IMBO's fine-tuning and local optimization
strengths to enhance task scheduling performance. Where
CESMA combines the scalability and analytics power of cloud
computing with edge-based real-time decision-making to
address the dynamic demands of smart manufacturing.
Through extensive simulations and experiments, the feasibility
and effectiveness of CESMA are validated, showing improved
task scheduling quality, resource utilization, and adaptability
to changing conditions. This research establishes a robust
platform for managing the complexities of task scheduling in
cloud-edge environments, advancing intelligent manufacturing
processes, and contributing to the integration of evolutionary
algorithms for real-time industrial decision-making.

Keywords:

Smart Manufacturing

Cloud-Edge Computing

Multi-objective Optimization

Genetic Algorithm

Optimization techniques

Copyright: ©2023 by the authors. Submitted for

possible open access publication under the terms

and conditions of the Creative Commons Attribution

(CC BY-4.0) license.

https://creativecommons.org/licenses/by/4.0/

1. Introduction

In the age of Industry 4.0, smart manufacturing
(SM) has undergone a transformative paradigm
shift through the synergistic use of, and
convergence between, cloud and edge computing
technologies [1-4]. Amid this amalgamation lie
promises of unprecedented efficiency boosts and
novel solutions to industrial challenges. Yet, with

such a technological revolution, optimizing the
schedule in such dynamic environment is still a
challenge, considering multiple objectives [5-7].
By combining cloud and edge computing
technologies, smart industries have achieved an
unmatched capability to utilize the benefits of real-
time data processing, scalability, and distributed
decision making. The essence of task scheduling in

http://doi.org/10.37649/aengs.2025.156372.1120
https://ajes.uoanbar.edu.iq/
mailto:E-mail@....l.com
mailto:ari.taha@bnu.edu.iq
mailto:a.afandy@lfu.edu.krd
https://orcid.org/0000-0003-0116-8377
mailto:mohammed.adam@lfu.edu.krd
https://orcid.org/0000-0002-1343-1163
mailto:ari.taha@bnu.edu.iq
https://orcid.org/my-orcid?orcid=0009-0000-8160-5834
mailto:ali.hussien@epu.edu.iq
https://orcid.org/my-orcid?orcid=0000-0001-5220-3318

22 Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16, 1, (2025) 21 ~ 35

Optimizing Cloud-Edge Integration for Task Scheduling in Smart Manufacturing Lines: A Multi-objective Method (Ali Hasan Husien)

these systems where the processes are well
coordinated and the efficiency is crucial cannot be
underestimated [8] [9]. First and foremost, an
efficient scheduling directly affects production
efficiency, resource utilization, energy
consumption, and quality assurance. Conventional
approaches to task scheduling are generally static
and centrally controlled and problematically
struggle with the continuously changing
complexities of modern smart manufacturing lines.
In resolving this, a multi-objective approach seems
the most captivating solution [10]. This approach
offers a complete picture by tackling different
conflicting objectives simultaneously, thus
achieving balance amid competing demands [11].
This paper proposes the Cloud-Edge-based Smart
Manufacturing Architecture, CESMA, a paradigm
shift in scheduling. CESMA integrates two state-of-
the-art optimization algorithms: NSGA-II [12-15]
and the Improved Monarch Butterfly Optimization
algorithm, IMBO [16-18]. NSGA-II does well in
exploring scheduling solutions on a global level,
while IMBO contributes expertise in local
optimization [19]. They provide CESMA with
comprehensive scheduling insights that are both
globally non-dominated and locally refined for
efficiency. This study epitomizes CESMA's
effectiveness through extensive simulations and
empirical studies, showing a vast improvement in
scheduling quality, resource utilization, and
adaptability to dynamic manufacturing conditions.
More than that, this work takes part in the broader
debate on how cloud-edge computing, combined
with evolutionary algorithms, can be used for more
effective decision-making within real-time
industrial environments to promise versatile
solutions amid Industry 4.0 revolutions. Because
smart manufacturing lines are remote and
heterogeneous, optimizing cloud-edge integration
for work scheduling poses special difficulties. Tasks
must be distributed effectively among cloud and
edge resources in these kinds of settings, juggling
several competing goals like reducing latency,
maximizing resource use, guaranteeing system
scalability, and preserving energy efficiency. These
complex requirements are frequently beyond the
scope of conventional single-objective or non-
hybrid optimization approaches. They frequently
overlook the complex interactions between these
levels to concentrate on either cloud or edge
optimization. This constraint provides compelling
evidence for implementing a hybrid strategy that
combines several algorithmic capabilities to

address the intricacy of cloud-edge work
scheduling successfully.
The main contributions of the paper are as follows:
➢ The article presents CESMA, a novel Smart

Manufacturing Architecture that integrates

cloud and edge computing.

➢ CESMA combines two efficient optimization

algorithms, NSGA-II and IMBO, to deal with

the complex task scheduling problem.

➢ CESMA optimizes task scheduling by

effectively managing the conflicting goals of

production efficiency, resource utilization,

energy consumption, and quality assurance.

Through extensive simulation, CESMA shows an
effective way of improving scheduling quality,
adaptability, and resource efficiency by large
margins—hence, it is an essential tool in the
decision-making of Industry 4.0 environments.

2. Literature Review
The problem is optimizing production [20]
scheduling and computation offloading in
intelligent workshops with a Cloud-Edge-Terminal
architecture. This balance optimization considers
production efficiency and computing delay, which
can solve the strong coupling relationship between
the production jobs and computing tasks. The
proposed model, PCCO, aims at dual objectives:
minimizing total offloading delay time for
computing tasks and the maximum completion
time for production jobs. An enhanced multi-
objective whale optimization algorithm with
improved exploration and diversity-preserving
mechanisms is used to achieve these dual
objectives. The traditional job scheduling faces the
challenges of low information transparency,
delayed response, inaccurate scheduling, and
suboptimal optimization that hinder productivity
and competitiveness in an enterprise [21]. It
introduces an innovative approach integrating
energy consumption concerns into job shop
scheduling to address these. It is designed to reduce
completion times, delay, and energy consumption,
realizing the importance of energy efficiency in
modern manufacturing. Formulate a multi-
objective scheduling model [22] as a mixed integer
linear programming (MILP) problem and utilize
preemptive fuzzy goal programming (FGP) with
linguistic terms for a solution, emphasizing
importance factors. It also introduces novel
reinforcement learning (RL) algorithms, including

Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16,1, (2025) 21 ~ 35 23

AJES P-ISSN: 1997-9428; E-ISSN: 2705-7440 https://ajes.uoanbar.edu.iq/

SARSA, Q-learning, and Deep-Q-Network (DQN), to
optimize resource scheduling in CMfg. [23] Address
the critical scheduling and process optimization
challenges for blockchain-enabled cloud
manufacturing (SPO-BCMfg), recognizing its
significance in achieving service-oriented goals.
Blockchain-enhanced cloud manufacturing offers
improved collaboration and information security,
integrating distributed storage and consensus
mechanisms, making SPO-BCMfg a complex multi-
objective optimization problem. The article
establishes a dynamic selection evolutionary
algorithm to tackle this challenge, focusing on
convergence and diversity, demonstrating its
superior performance to other advanced
evolutionary algorithms.
The article [24] tackles challenges in handling
production exceptions within smart
manufacturing, dealing with resource
uncertainties, delayed identification and control,
and prolonged decision-making due to complex
factors. It introduces an edge-cloud collaboration-
based self-adaptive approach that leverages IoT
and edge computing for resource intelligence, uses
fuzzy Bayesian networks for exception diagnosis,
and promotes self-adaptive handling through
machine collaboration across production levels,
demonstrated to improve efficiency in a casting
post-processing system case study. Challenges
posed by the vast expansion [25] of the Internet of
Things (IoT) by developing a multi-cloud task
scheduling model with six key goals: minimizing
time complexity, cost, internet traffic, energy usage,
optimizing resource utilization, and achieving load
balancing. The study employs a multi-objective
intelligent algorithm based on the sine function to
maximize these goals, ultimately enhancing
scheduling effectiveness and security in IoT data
processing, offering a novel solution to IoT's data
management challenges. This article [26] tackles
workflow applications' rising significance, driven
by computing technology advancements. It
addresses the challenge of optimizing complex
workflows, accounting for factors like Quality of
Service, task dependencies, and user deadlines. It
introduces the Multi-objective Artificial Algae
(MAA) algorithm for efficient scientific workflow
scheduling in a fog-cloud environment, focusing on
reducing execution times, energy usage, and costs
while maximizing fog resource utilization,
addressing a gap in heterogeneous computing
systems.

3. Methodology
3.1 Smart Manufacturing Lines:

Optimizing various objectives in the context of
bright manufacturing lines is paramount, and the
whole manuscript has a novel IIoT cloud-edge-end
collaborative computing offload architecture. This
developed approach capitalizes on the unique
strengths of cloud servers, known for their
powerful computing and storage resources, and
edge servers, prized for their low communication
cost, short response time, and robust network
adaptability. By harnessing the best of both worlds,
the whole manuscript seamlessly integrates and
invokes heterogeneous computing resources,
dynamically offloading tasks to the most suitable
location based on the distinct requirements of
different applications. The concept of the system
model is adapted from the study [27].

3.1 1 Architecture Overview:
The whole manuscript architecture consists of
three pivotal layers, as illustrated in Figure 1.
A. End-Device Layer: The end-device layer is the

lowest layer, and it contains many IIoT devices that

are abundant in sensors. These are small, sensor-

rich devices but are highly constrained by small

battery capacity, limited computing resources, and

constrained storage resources. An energy-efficient

data transmission mechanism is envisaged to

process the data mined from these devices. The

task data from these devices are forwarded to the

edge or cloud layers through wireless access points

(APs) or base stations (BSs) for efficient data flow.

B. Edge Layer: The middle layer, also known as the

edge layer, is composed of lightweight edge servers

strategically placed at the periphery of a network.

Indeed, these edge servers are well suited to

offering low-latency computing services, which

perfectly fit the real-time requirements of smart

manufacturing processes. Not wanting to get

overloaded and desiring the best allocation of

https://ajes.uoanbar.edu.iq/

24 Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16, 1, (2025) 21 ~ 35

Optimizing Cloud-Edge Integration for Task Scheduling in Smart Manufacturing Lines: A Multi-objective Method (Ali Hasan Husien)

computing resources, the edge servers can offload

tasks wisely to the cloud servers via high-speed

wired links so that there is harmony in the

computing resource allocation.

C. Cloud Layer: The cloud layer is filled by cloud

servers’ rich in computing and storage resources

that simultaneously serve users in different

geographical regions. This introduces data

transmission issues because of the multiple users

sharing the same resources and the large distances

involved in data transmission using these powerful

but remote cloud resources. Thus, overcoming the

issues is a part of whole manuscript multi-

objective optimization.

3.1.2 Multi-objective Approach:
whole manuscript architecture balances the multi-
objective requirements of intelligent
manufacturing lines using intelligent task
offloading considering computing power, energy
cost, and latency. The most appropriate layer,
whether it's the agile edge for low-latency
processing or the robust cloud for intensive
computations, is dynamically allocated to the tasks
while ensuring minimum energy consumption and
efficient utilization of resources. This dynamic task
allocation is guided by the imperatives of
production efficiency, resource optimization,
energy conservation, and quality assurance—
hence setting up an agile, responsive, and multi-
objective-driven framework for smart
manufacturing.
In the following sections, whole manuscript will go
into the finer details of this architecture, showing
how it can be transformative for smart
manufacturing lines. whole manuscript shall show
how it shapes these manufacturing environments
into agile ecosystems driven by multiple objectives
while harvesting the full potential of both cloud and
edge computing. Elaborating on top of the models
presented in the study [27], whole manuscript will
further detail the proposed CESMA approach.

Figure 1: Proposed CESMA Model

3.1.3 Proposed CESMA Approach
Indeed, as noted above, the manuscript proposes
CESMA by smoothly combining two potent
methods: NSGA II and IMBO. The whole manuscript
takes advantage of these potent methods in a
complementary manner to acquire an improved
task scheduling method for manufacturing lines,
which will be detailed in the following sections.

A. Performance of NSGA II in CESMA
The NSGA is a multi-objective optimization
algorithm for solving complex optimization
problems with multiple conflicting objectives. The
NSGA algorithm can also be applied to the problem
of task scheduling within smart manufacturing
lines to find an optimal scheduling solution for
considering multiple objectives like production
efficiency, resource utilization, energy
consumption, and quality assurance. All

Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16,1, (2025) 21 ~ 35 25

AJES P-ISSN: 1997-9428; E-ISSN: 2705-7440 https://ajes.uoanbar.edu.iq/

discussions and experiments are addressed in the
study [15].

B. Algorithm 1: Initialization of Resource

Scheduling Population

The initialization step is very critical in NSGA for
the application of smart manufacturing lines. First,
NSGA randomly assigns tasks to available
computing resources to form an initial population
of scheduling schemes. This random distribution
might seem aimless, but it brings diversity to the
population. This diversity is significant in
manufacturing, since it harbors a variety of
resource allocations and task schedules. Diversity
is significant for NSGA, as it allows exploration of a
large and diverse solution space. Starting from a
broad initial solution spectrum, NSGA has a better
chance of finding good scheduling strategies
adaptable to the multidimensional challenges
arising in smart manufacturing environments.
Require: 𝑣𝑚, 𝑡,𝑚, 𝑛, 𝑁

Ensure Resource scheduling schemes x

Step 1: 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁 𝑑𝑜

Step 2: 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 𝑑𝑜

Step 3: Randomly select a task 𝑡𝑗And assign it to

computing resource 𝑣𝑚𝑘 , 𝑣𝑚𝑘 ∈ 𝑣𝑚, 0 ≤ 𝑘 ≤

𝑚, 𝑡𝑗 ∈ 𝑡

Step 4: Generate a task scheduling scheme 𝑥𝑖

Step 5: end for

Step 6: end for

Step 7: Generate a new initial population of

scheduling scheme 𝑥

Step 8: return 𝑥
The algorithm is designed to initialize a population
of scheduling schemes for tasks in the context of
smart manufacturing. It works with a given set of
parameters and objects, including available virtual
machines 𝑣𝑚, a list of tasks, , 𝑡, the total number of
virtual machines 𝑚, the total number of tasks, , 𝑛 ,
and the desired population size, 𝑁. In each
iteration, the algorithm goes through the process of
constructing this population 𝑥 of scheduling
schemes. First, it randomly selects a task. 𝑡𝑗 From

the set of available tasks 𝑡. This random selection
ensures diversity in the assignment of tasks to
resources. Next, the chosen task 𝑡𝑗 is assigned to a

computing resource 𝑣𝑚𝑘 . The selection of the
specific virtual machine 𝑣𝑚𝑘 It is also random, and
it is drawn from the available virtual machines 𝑣𝑚.
Importantly, this assignment process considers
various virtual machines, allowing for the
exploration of different resource allocations. Once

tasks are allocated to virtual machines, a task-
scheduling scheme 𝑥𝑖 Is generated.
In general, this algorithm provides a basis for the
initial population of diverse scheduling solutions,
which is essential in solving the complex and
dynamic scheduling problems encountered in
smart manufacturing environments.

C. Algorithm 2: Calculation of the

Chromosome Distribution and Fitness

of a Scheduling Scheme

In NSGA, a scheduling scheme's chromosome
distribution and fitness calculation are used to
calculate a fitness value for each scheduling
scheme, which represents how well it conforms to
predefined objectives such as production
efficiency, resource utilization, energy
consumption, and quality assurance. Such a fitness
evaluation lets NSGA segregate reasonable
solutions from bad ones. It helps in the diversity of
scheduling schemes in solution space, maintaining
diversity in a population. In this way, it avoids a
premature convergence to suboptimal solutions
and explores wide ranges of schedules, thereby
maintaining a high possibility of discovering
Pareto-optimal solutions in NSGA.
Require: Current task scheduling set 𝑄(𝑡)

Ensure: The matrix of density value 𝐷(𝑡), distance

value 𝐷𝐼(𝑡)

and neighborhood relation in individuals set

𝑅

Step 1: 𝑐 = 0

Step 2: while not end of 𝑄(𝑡), do

Step 3: 𝑐 = 𝑐 + 1

Step 4: end while

Step 5: for 𝑖 = 1 𝑡𝑜 𝑚 𝑑𝑜

Step 6: 𝐷𝑖(𝑡) = 0

Step 7: 𝐷𝐼𝑖(𝑡) = 0

Step 8: for 𝑗 = 1 𝑡𝑜 𝑛 𝑑𝑜

Step 9: if 𝑖 ≠ 𝑗 𝑎𝑛𝑑 [𝑄[𝑖], 𝑄[𝑗] < 𝑅)𝑡ℎ𝑒𝑛

Step 10: Calculate 𝐷𝑖,𝑗(𝑡)by Fitness function

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑧1, 𝑧2) = {
𝑧1 = min(𝑇𝑡𝑜𝑡𝑎𝑙)

𝑧2 = min(𝐶𝑡𝑜𝑡𝑎𝑙)

Step 11: Calculate𝐷𝐼𝑖,𝑗(𝑡)by 𝑅𝑡 =

{

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛

1+exp(
𝑎(𝑅

(𝑡−1)−𝐷min(𝑡)

𝐷𝑎𝑣𝑔(𝑡)−𝐷𝑚𝑖𝑛(𝑡)
)

+ 𝑅𝑚𝑖𝑛

𝑅𝑚𝑖𝑛,𝑅(𝑡−1)<𝐷𝑚𝑖𝑛 ,

 𝑅(𝑡−1) ≥ 𝐷𝑚𝑖𝑛(𝑡)

https://ajes.uoanbar.edu.iq/

26 Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16, 1, (2025) 21 ~ 35

Optimizing Cloud-Edge Integration for Task Scheduling in Smart Manufacturing Lines: A Multi-objective Method (Ali Hasan Husien)

Step 12: Record the neighborhood relationship

between individuals: 𝑅𝑖,𝑗(𝑡)

Step 13: end if

Step 14: end for

Step 15: end for

Step 16: return 𝑅(𝑡)
This algorithm calculates the density value,
distance value, and neighborhood relationships of a
set of task-scheduling solutions. First, it initializes a
counter c to keep track of the number of tasks in the
scheduling set. So long as there are tasks in the set,
the counter increments by one to make sure that
each task is considered. Then arrays 𝐷𝑖(𝑡) and
𝐷𝐼𝑖(𝑡) that are initialized for each machine and a
base to record values for density and distances of
nodes. Then it iterates upon the machine, task
combination such that for a pair, checking the
distance in between a pair of tasks as it falls under
a threshold that is predetermined i.e, 𝑅 as
indicated. The density value 𝐷𝑖,𝑗(𝑡) is computed by

the algorithm if the condition is met, through a
fitness function that represents how good tasks are
assigned to machines. It also computes the distance
value 𝐷𝐼𝑖,𝑗(𝑡), which is influenced by parameters

such as the range adjustment factor R^t, previous
distance values, 𝐷𝑚𝑖𝑛(𝑡), 𝐷𝑎𝑣𝑔(𝑡), among others.

This distance value is further used to model the
relationships between tasks and machines. It
records the neighborhood relations 𝑅𝑖,𝑗(𝑡) between

scheduling schemes. These relations will help to
identify those schemes which are close to each
other in the solution space and, based on that, make
useful optimization conclusions. Eventually, after
all machines and tasks have been calculated and
recorded, the algorithm returns a matrix 𝑅(𝑡) for
neighborhood relations among individuals
(scheduling schemes). This matrix gives a holistic
view of how close different solutions are,
supporting the optimization process by giving
promising solutions.

D. Algorithm 3: Resource Scheduling

Population Maintenance
Some of the critical uses of the resource scheduling
population maintenance algorithm within multi-
objective optimization, especially in smart
manufacturing, are as follows. First and foremost, it
guarantees population diversity; this is very
important because it avoids pre-mature
convergence of the optimization process into one
solution and ensures that wide spectrum
exploration by the algorithm is done well. This

algorithm is also important in pointing out the non-
dominated solutions, those that in at least one
objective are better and are not worse in any other.
The algorithm keeps the non-dominated
scheduling schemes—the Pareto-optimal
solutions—by ensuring that only high-quality
alternatives are retained in the population.
Besides, the algorithm controls the size of the
population—a very important factor in resource
management. An extremely large population can
stress computational resources and slow the
optimization process. By keeping the population
size optimal, this algorithm controls the utilization
of resources. In addition, it enables dynamic,
intelligent manufacturing by adapting to changed
objectives. Manufacturing conditions can change
with dynamic production demand or the
availability of resources. Such flexibility allows the
algorithm to respond to such changes by
readjusting the scheduling schemes to the changed
manufacturing environment. Finally, this algorithm
actively supports the exploration and retention of
high-quality scheduling solutions. It steers clear of
prematurely converging toward suboptimal
solutions and actively encourages the discovery of
improved trade-offs among conflicting objectives.
In essence, this performance plays a pivotal role in
ensuring that multi-objective optimization for
smart manufacturing is characterized by diversity,
efficiency, adaptability, and the pursuit of
excellence in scheduling schemes.
Require: Current task scheduling population
𝑃𝑜(𝑡), non-dominated task scheduling set 𝑁𝐷𝑆𝑒𝑡,
the neighborhood relationship 𝑅(𝑡)

Ensure: Optimized task scheduling

population 𝑂(𝑡)

Step 1: 𝑁 = 0

Step 2: While not the end of 𝑃𝑜(𝑡), do

Step 3: 𝑁 = 𝑁 + 1

Step 4: end while

Step 5: Delete index set 𝐷 = ∅

Step 6: 𝑖 = 1

Step 7: 𝑤ℎ𝑖𝑙𝑒 𝑖 > 𝑁 𝑑𝑜

Step 8: Sort in descending order according to the
neighborhood density 𝐷(𝑡),
Step 9: if (𝐷𝑖−1(𝑡) ≠ 𝐷𝑖(𝑡)) then

Step 10: 𝐷 = 𝐷 ∪ 𝑀𝑎𝑥(𝐷𝑖−1(𝑡), 𝐷𝑖(𝑡))

Step 11: else if (𝐷𝑖−1(𝑡) == 𝐷𝑖(𝑡)𝑎𝑛𝑑 𝐷𝐼𝑖−1(𝑡) ≠

𝐷𝐼𝑖(𝑡)) then

Step 12: 𝐷 = 𝐷 ∪ 𝑀𝑖𝑛(𝐷𝐼𝑖−1(𝑡), 𝐷𝐼𝑖(𝑡))

Step 13: end if

Step 14: 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 𝑑𝑜

Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16,1, (2025) 21 ~ 35 27

AJES P-ISSN: 1997-9428; E-ISSN: 2705-7440 https://ajes.uoanbar.edu.iq/

Step 15: if (𝐷𝑗 , 𝑃𝑜𝑗(𝑡) ∈ 𝑅(𝑡) then

Step 16: 𝐷𝑗(𝑡) = 𝐷𝑖(𝑡) − 1

Step 17: 𝐷𝐼𝑖(𝑡) = 𝐷𝐼𝑖(𝑡) − 𝐷𝑗

Step 18: end if

Step 19: end for

Step 20: 𝑖 = 𝑖 + 1

Step 21: end 𝑤ℎ𝑖𝑙𝑒𝑁𝐷𝑆𝑒𝑡 = 𝑃𝑜(𝑡) − 𝐷

Step 22: return 𝑁𝐷𝑆𝑒𝑡
The following is the algorithm to optimize a
population of task scheduling solutions for multi-
objective optimization. First, it initializes a counter
𝑁 = 0; then, it enters a loop that iterates over the
current task scheduling population 𝑃𝑜(𝑡). For each
iteration, N is incremented 𝑁 = 𝑁 + 1. An index
set 𝐷 is initialized to be an empty set. A counter i is
initialized to one 𝑖 = 1, and another loop is
entered continuing as long as 𝑖 > 𝑁. Within this
loop, the scheduling schemes are sorted in
descending order based on their neighborhood
density values 𝐷(𝑡). It checks whether the
neighborhood density of the previous scheduling
scheme,(𝐷𝑖−1(𝑡) ≠ 𝐷𝑖(𝑡)). If yes, it adds the
maximum of these densities to the index set 𝐷. If
the densities are equal but the distance
values 𝐷𝐼𝑖(𝑡) differ, it adds the minimum distance
value to 𝐷(𝑡). The algorithm then iterates over all
tasks and checks if certain conditions are satisfied
based on the neighborhood relation. If those
conditions are met, it adjusts the values of density
𝐷(𝑡) and distance 𝐷𝐼(𝑡). The loop until the
condition in which 𝑖 > 𝑁 is violated. At last it
calculates the non-dominated task scheduling set
𝑁𝐷𝑆𝑒𝑡 by removing the index set 𝐷 from current
task scheduling population 𝑃𝑜(𝑡) and return this
optimized set. In essence, this algorithm is very
important in maintaining diversity, identifying
non-dominated solutions, and ensuring that the
task scheduling population aligns with the
objectives of multi-objective optimization in smart
manufacturing. It prevents premature convergence
to suboptimal solutions and ensures a high-quality
scheduling scheme.

E. Performance of IMBO in CESMA

Improved Monarch Butterfly Optimization is a bio-
inspired optimization method based on the
foraging behavior of the monarch butterfly and has
been developed delicately to address complex
optimization problems. It makes an imitation of
how the monarch butterfly intelligently finds out
the food resources. IMBO is an improved version of
the original MBO by enhancing its exploration and
exploitation abilities; hence, it can be said to be the

evolution of MBO, where, in CESMA, the
combination of IMBO with NSGA-II is integrated
smoothly. NSGA-II is good at crossing the vast
global solution space and identifying non-
dominated solutions—those optimal in Pareto
terms. IMBO brings its unique prowess to the table
by focusing on local optimization and the
meticulous refinement of potential solutions
residing in the most promising corners of the
solution space. Such dynamic synergy of algorithms
underpins CESMA's formidable optimization
prowess in smart manufacturing. Further insight
into IMBO is drawn from the investigation
presented in [16].

F. Algorithm 4 IMBO

Input: 𝑇𝑎𝑠𝑘 𝑞𝑢𝑒𝑢𝑒, 𝑁𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 𝑡, 𝑛, 𝑚

Output: The optimal path

Step 1: Initialize: 𝑝, 𝑚1, 𝑚2, 𝑝𝑒𝑟𝑖, 𝑝, 𝐵𝐴𝑅, 𝜗, 𝜇

Step 2: Reorder task priority using the merge

sorting method to get queue 𝛹

Step 3: 𝑓𝑜𝑟 𝑚𝑏 = 1; 𝑚𝑏 <= 𝑚; 𝑚𝑏 + + 𝑑𝑜

Step 4: Set an initial value for each monarch

butterfly.

Step 5: end

Step 6: 𝑓𝑜𝑟 𝑡 = 1; 𝑡 <= 𝑡; 𝑡 + + 𝑑𝑜

Step 7: According to [19] Equation (25), get the task

assignment sequence.

Step 8: Evaluate the fitness value of each individual

according to Equation (14) from [16].

Step 9: Sort the individuals based on their fitness

values.

Step 10: Select the optimal path.

Step 11: Save the two monarch butterflies with the

best fitness values.

Step 12: 𝑓𝑜𝑟 𝑚𝑏 = 1; 𝑚𝑏 <= 𝑚1; 𝑚𝑏 + + 𝑑𝑜

Step 13: Use the DMMO of equation (17) from [16]

to update 𝑆𝑃1

Step 14: end

Step 15: 𝑓𝑜𝑟 𝑚𝑏 = 1 + 𝑚1; 𝑚𝑏 <= 𝑚1 +
𝑚2; 𝑚𝑏 + + 𝑑𝑜
Step 16: Use the BAO to update 𝑆𝑃2 [16]

Step 17: end

Step 18: Combine 𝑆𝑃1 and 𝑆𝑃2 of [16] to generate

a new population.

Step 19: Use the two elites to replace the worst two

individuals.

Step 20: end
The algorithm begins with initialization, where key
parameters like 𝑝, 𝑚1, 𝑚2, 𝑝𝑒𝑟𝑖, 𝑝, 𝐵𝐴𝑅, 𝜗, 𝜇

https://ajes.uoanbar.edu.iq/

28 Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16, 1, (2025) 21 ~ 35

Optimizing Cloud-Edge Integration for Task Scheduling in Smart Manufacturing Lines: A Multi-objective Method (Ali Hasan Husien)

are set. Following this, it reorders the task queue 𝛹
using a merge sorting method to establish task
priorities. Monarch butterflies are then initialized
with initial values. In the main loop, which iterates
through tasks, a task assignment sequence is
determined according to Equation (25) from
reference [19], which combines communication
and reception times. Fitness for each individual is
calculated by the Equation (14) in the reference
[16], and individuals are sorted based on the
calculated fitness. Among the sorted individuals, an
optimal path is chosen as the best solution, and the
two best monarch butterflies bare kept as elites
based on the fitness values For a subset of the
monarch butterflies, 𝑚1update SP1 based on the
DMMO algorithm from Equation (17) of the
reference [16]. TIn the other subset, m 2, updates,
the SPs are updated with the AO algorithm. A new
population is obtained by merging SP1 and SP2
from [16]. Finally, the two elites previously
substituted the worst individuals from the
population. This algorithm incorporates
prioritizing the tasks, fitness evaluation, sorting,
and population control to find the best path in the
CESMA model using the equations from the
references above to make it more efficient.
The performance of NSGA-II is thoroughly
examined in the context of optimizing multi-
objective problems in the paper [15], which covers
all talks and experiments. The study demonstrates
how well the algorithm manages trade-offs
between goals, such as decreasing energy
consumption and job completion time, and
obtaining a Pareto-optimal set with enhanced
variety and convergence. Furthermore, it shows
how flexible NSGA-II is when used in dynamic
scheduling circumstances, exhibiting notable
improvements in task latency reduction and
resource utilization over conventional techniques.
Understanding its application and efficacy inside
CESMA is based on these observations.

G. cross-layer design between NSGA

and IMBO
This normally involves integrating the optimization
capabilities of NSGA with the IMBO algorithm to
realize better efficiency in task scheduling for the
cloud-edge environment. The idea here is to
leverage the powers of the two algorithms to find a
balance between minimizing delays and
maximizing resource utilization in the smart
manufacturing line. The cross-layer design
combines the exploration power of NSGA with the

refinement capability of IMBO for robust multi-
objective optimization.

3.1.4 CESMA Algorithm: Centralized
Expert Supervises Multi- Agents

Require: N agents 𝜋𝜃1, …, 𝜋𝜃𝑁 observation buffer
D for multi-agent observations, batch size B
1: while 𝜋𝜃1, … 𝜋𝜃𝑁 not converged do
2: Obtain observations 01, …, 0N from the
environment
3: Obtain agent’s actions, 𝑎1 = 𝜋θ(o1), … , 𝑎𝑁 =
𝜋𝜃𝑁(𝑜𝑁)
4: Store the observations together, i.e. put
(o1,…,oN) in D

5: if |𝐷| > 𝐵 𝑡ℎ𝑒𝑛
6: Sample a batch of B multi-agent observations
[(O1b,…, ONb)]bB=1
7: Let the centralized expert E lable each
observation to obtain an action: âib=E(O1b,…,ONb)I
for i=1,…,N and b=1,…,B.
8: Form the input-lable pairs [(O1b, â1b),…,(ONb, âNb)]
bN=1
9: Perform supervised learning for 𝜋∅I where the
inputs are (Oib) and the labls are (âib), for i=1,…,N.
10: end if
11: Obtain new observations from agent’s actions,
(O`1,…,O`N), and set O1=O`1,…,ON=O`N

12: end while

NSGA-II Drawbacks:
Lack of diversity can cause solutions to converge to
a small region, limiting the solution variety.
Slow convergence: High computational cost,
especially with many objectives, can lead to longer
runtimes.
Noise handling: Struggles with noisy environments,
affecting its robustness.
IMBO Drawbacks:
Model dependency: Relies on the quality of the
surrogate model, which may not generalize well,
affecting optimization performance.
Computational cost: High cost of model training,
especially in high-dimensional spaces.
Initialization sensitivity: Performs poorly if the
initial model isn't well-informed, making it
sensitive to initial conditions.
Impact on CESMA:
Diversity and Convergence: Depending on its
design, CESMA could either mitigate or amplify
NSGA-II's diversity and convergence issues.
Modeling and Efficiency: By incorporating more
advanced or hybrid modeling, CESMA might reduce
the reliance on imperfect surrogate models.

Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16,1, (2025) 21 ~ 35 29

AJES P-ISSN: 1997-9428; E-ISSN: 2705-7440 https://ajes.uoanbar.edu.iq/

Robustness: With better handling of noise and
uncertainty, CESMA could outperform both NSGA-
II and IMBO in real-world applications.
The three-layer hierarchical architecture
underlying the Cloud-Edge Smart Manufacturing
Architecture (CESMA) combines cloud, edge, and
end-device layers to maximize work scheduling in
dynamic smart manufacturing environments. IIoT
devices—which gather real-time data—are sent to
the edge layer for low-latency processing, and local
decision-making makes up the end-device layer.
Tasks needing significant computing are offloaded
to the cloud layer, which offers worldwide system-
wide optimization and great computational
capability. Based on latency, energy consumption,
and resource availability, this cross-layer
architecture dynamically distributes activities
ensuring scalability, flexibility, and effective
resource use. CESMA integrates the Improved
Monarch Butterfly Optimization (IMBO) for local
refinement and the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) for global optimization
using a hybrid optimization approach. While IMBO
perfects Pareto-optimal solutions to improve
dependability and efficiency, NSGA-II finds these
solutions by investigating several scheduling
techniques. This mix guarantees a harmony
between task completion time, energy use, and
manufacturing efficiency. In smart manufacturing
systems, CESMA offers a strong, scalable, and
dependable solution by dynamically adjusting to
changes in job volume and system load for multi-
objective task scheduling.

4. Results and Experiments

4.1 Simulation Setup

The whole manuscript developed a detailed

simulation framework in MATLAB, specifically

designed to thoroughly test the proposed CESMA's

performance. The presented simulation

environment represents one of the most crucial

validation tools for the whole manuscript's new

task-scheduling approach—tuned to the highest

order of fineness to the peculiar needs of the smart

manufacturing contexts. This set was inspired and

adapted from [28]. This comparison of CESMA with

other existing scheduling alternatives, like IPSO,

IACO, RR, and HH, would provide insights related to

the performance and superiority of the same.

The suggested Cloud-Edge Smart Manufacturing
Architecture (CESMA) was validated by building an
extensive simulation environment. The simulation

setup, which is designed to replicate actual smart
manufacturing situations, includes task datasets,
resource setups, and assessment parameters.

4.1.1 Task Completion Time
Figure 2 shows that CESMA always achieves
smaller task completion times for a range of task
volumes, which further explains its efficiency and
effectiveness in the scheduling of tasks. Even with a
small number of tasks, CESMA finishes them
quickly and proves to be good at dealing with tasks
in smart manufacturing environments. Impressive,
CESMA handles the increase in tasks well, thus
showing good scalability and flexibility. This stable
capability of keeping the completion times at low
levels proves that CESMA can schedule smart
manufacturing tasks under diverse objective
balances. On the other hand, IPSO works relatively
efficiently using small sets of tasks but incurs
growing completion times with increasing
numbers of tasks. IPSO might be OK in situations
with a small number of tasks but doesn't scale.
Similarly, IACO (Improved Ant Colony
Optimization) is better than IPSO in terms of
efficiency with smaller sets of tasks and larger
completion times in more significant scenarios.
Both IPSO and IACO could be more suitable in

scenarios where there are fewer tasks. On the
other hand, RR always reflects an increased
completion time when more tasks are needed,
hence showing inefficiency while handling a larger
volume. RR does not seem to handle large-scale
scheduling well. In contrast, HH also has significant
increases in completion times with increasing
volume, which may indicate some kind of limitation
in large-scale scheduling.
The task completion time for each algorithm is
calculated by submitting a range of tasks starting
from 10 to 50 tasks in total. Algorithm RR achieves
task completion in 12 seconds, Algorithm IPSO in
11 seconds, Algorithm IACO in 10.2 seconds, and
Algorithm HH in 9 seconds and the proposed
algorithm CESMA completed the task in 8 seconds
for the first set of 10 tasks. This trend continues for
the remaining set of tasks whereas the final set of
50 tasks the following are the task completion time
attained by all the compared algorithms. Algorithm

RR achieves task completion in 24 seconds,
Algorithm IPSO in 21 seconds, Algorithm IACO in
20 seconds, and Algorithm HH in 19 seconds and
the proposed algorithm CESMA completed the task
in 18 seconds. Among the compared five
algorithms, the proposed CESMA algorithm
demonstrates the best performance with the

https://ajes.uoanbar.edu.iq/

30 Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16, 1, (2025) 21 ~ 35

Optimizing Cloud-Edge Integration for Task Scheduling in Smart Manufacturing Lines: A Multi-objective Method (Ali Hasan Husien)

shortest task completion time, followed by
Algorithm HH. Algorithm RR takes the longest time
to complete the task.

Figure 2: Task completion time comparison

4.1.2 Energy Consumption Analysis

This section will include energy consumption rates
expressed as the energy consumed per unit task
volume. For comparison, each algorithm's
performance will be evaluated under the same task
load.
Energy Consumption Rate (ECR) Formula

𝐸𝐶𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 (𝐽)

𝑇𝑎𝑠𝑘 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑀𝐵)

Where:

Energy Consumed: Includes edge and cloud device

consumption.

Task Volume: Total size of tasks processed in MB.

Table 1. Performance Comparison

Algorithm Task Volume

(MB)

Energy

Consumed

(J)

ECR

(J/MB)

NSGA-II 1000 500 0.50

IMBO 1000 450 0.45

CESMA

(proposed)

1000 400 0.40

The proposed CESMA algorithm exhibits the lowest
energy consumption rate (0.40 J/MB),
demonstrating improved efficiency by effectively

balancing task allocation between cloud and edge
systems.

4.2 Total Execution Time
Assume that the cross-node execution of
computing tasks is not considered, that the task
submitted by the terminal user is the minimum unit
of task allocation by the scheduler, that the
terminal user completes the decomposition of large
computing tasks, and that the tasks are
independent, without communication and data
synchronization, thus avoiding the performance
degradation caused by frequent communication
between tasks. According to the assumptions that
tasks in the task set are independent and not
decomposable, the set is called a meta task set.

4.2.1 Energy Consumption
It is clear from Figure 3 that CESMA is extremely
good at keeping energy consumption lower when
the volume of tasks increases, compared to other
models. This shows its aptitude for optimal energy
utilization for smart manufacturing. Moreover,
even with a large workload, CESMA always shows
good efficiency, proving its adaptability and
scalability. On the other hand, IPSO, IACO, and RR
have a higher energy consumption value,
increasing with the number of tasks. The trend is
that these algorithms may not be so good at
efficiently using energy resources, especially for
larger tasks. While IPSO and IACO work reasonably
well for smaller tasks, they have some limitations in
scaling up their efficiency. RR's continued high
energy consumption, especially in scenarios with
many tasks, flags inefficiency in handling large
workloads.
Interestingly, HH, while placed closely to CESMA in
the figure, exhibits a good characteristic: It tends to
decrease energy consumption with an increase in
the volume of tasks; hence, it is quite suitable for
large volumes of tasks besides CESMA. From an
overall point of view, CESMA's consistent
achievement of lower energy consumption, even
under increased volumes of tasks, shows that it can
make a proper trade-off between energy efficiency
and scalability in smart manufacturing.

Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16,1, (2025) 21 ~ 35 31

AJES P-ISSN: 1997-9428; E-ISSN: 2705-7440 https://ajes.uoanbar.edu.iq/

Figure 3: Comparison of Energy Consumption

The energy consumption for each algorithm is
calculated by submitting a total range of tasks from
100 to 500. Algorithm RR consumes 420 Joules,
Algorithm IPSO 400 Joules, Algorithm IACO 380
Joules, and Algorithm HH 360 Joules, while the
proposed algorithm CESMA consumes 350 Joules
for the first set of 100 tasks. This trend continues
for the remaining set of functions with slight
variation in the performance of the HH algorithm.
Whereas for the final set of 500 tasks, the following
are the energy consumption values attained by all

the compared algorithms: Algorithm RR consumes
600 Joules, Algorithm IPSO consumes 580 Joules,
Algorithm IACO, and HH consumes 5757 Joules,
while the proposed algorithm CESMA consumes
550 Joules. Among the compared five algorithms,
the proposed CESMA algorithm demonstrates the
best performance with the lowest energy
consumption, followed by Algorithm HH. Algorithm
RR consumes the highest energy to complete the
tasks.

4.2.2 Quality Assurance based on

monitoring defect rates
In Figure 4, CESMA consistently outperforms other
models, maintaining lower defect rates as task
volume increases in smart manufacturing. This
highlights CESMA's effectiveness in defect
monitoring and prevention. Even with increased
tasks, CESMA continues to stay at lower defects
rates; hence it shows its ability in error prevention.
In contrast, IPSO, IACO, RR, and HH show generally
higher defect rates with increased tasks and hence
are not that efficient in preventing defects when
compared to CESMA, mostly for high-task
scenarios. For smaller tasks, IACO and HH show
suitability; however, defect prevention becomes
hard with an increase in task volume. RR showed
consistent higher rates, indicating poor error
prevention ability for tasks with many elements.

The defect rates for each algorithm are calculated
by submitting a range of tasks starting from 100 to
500 tasks in total. Algorithm RR has a defect rate of
2.8%, Algorithm IPSO 2.5%, Algorithm IACO 2.2%,
and Algorithm HH 2.0%, while the proposed
algorithm CESMA achieves a defect rate of 2.0% for
the first set of 100 tasks. This trend continues for
the remaining set of tasks. In contrast, for the final
set of 500 tasks, the following are the defect rates
attained by all the compared algorithms: Algorithm
RR has a defect rate of 1.9%, Algorithm IPSO 1.6%,
Algorithm IACO 1.3%, algorithm HH 1.4%, while
the proposed algorithm CESMA achieves a defect
rate of 1.2%. Among the compared five algorithms,
the proposed CESMA algorithm demonstrates the
best performance with the lowest defect rate,
followed by Algorithm IACO. Algorithm RR has the
highest defect rate in completing the tasks.

https://ajes.uoanbar.edu.iq/

32 Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16, 1, (2025) 21 ~ 35

Optimizing Cloud-Edge Integration for Task Scheduling in Smart Manufacturing Lines: A Multi-objective Method (Ali Hasan Husien)

Figure 4: Defect Rates Monitoring Comparison

4.2.3 Reliability

In Figure 5, CESMA is always better than its
counterparts in tasks numbering few or many. This
steadfast dependability is what gives CESMA its
great power in keeping faults, interruptions, and
failures in the system as low as possible, regardless
of how complicated the manufacturing process is.

What singles CESMA out is its strength in rising
workloads. As tasks multiply, CESMA's reliability
remains a constant. This resilience is critical in the
real manufacturing world, where demand can vary
hugely from one time to another. CESMA's
reliability doesn't waver; it's the bedrock on which
manufacturing operations can rely.

Figure 5: Reliability Comparison

Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16,1, (2025) 21 ~ 35 33

AJES P-ISSN: 1997-9428; E-ISSN: 2705-7440 https://ajes.uoanbar.edu.iq/

One of the great features of CESMA is its ability to
prevent errors. Even with increasing volumes of
tasks, CESMA maintains low rates of defects,
outperforming RR, IPSO, IACO, and HH consistently.
This mastery over error avoidance is one of the
most crucial enablers for ensuring product quality
and preventing expensive production disruptions.
Hiccups. CESMA is efficient and reliable, which
contrasts with some algorithms that sacrifice
reliability when the workload becomes more
extensive; it doesn't sacrifice one for the other. This
balance is quite vital for smooth and reliable smart
manufacturing systems.
The reliability of each algorithm is calculated by
submitting a range of tasks starting from 100 to
500 tasks in total. Algorithm RR achieves a
reliability of 88%, Algorithm HH 89%, Algorithm
IACO 90%, and Algorithm IPSO 91%, while the
proposed algorithm CESMA achieves a reliability of
95% for the first set of 100 tasks. This trend
continues for the remaining set of tasks. In contrast,
for the final set of 500 tasks, the following are the
reliability values attained by all the compared
algorithms: Algorithm HH achieves a reliability of
75%, Algorithm RR 76%, Algorithm IACO 77%,
Algorithm IPSO 78%, while the proposed algorithm
CESMA achieves a reliability of 81%. Among the
compared five algorithms, the proposed CESMA
algorithm demonstrates the best performance with
the highest reliability, followed by Algorithm IPSO.
Algorithm HH has the lowest reliability in
completing the tasks.

4.3 Method of Validation

The following steps are part of the validation
process:
Benchmarks were chosen from well-known smart
manufacturing line job scheduling scenarios. These
consist of established simulation models and
standard datasets.

performance indicators:
Task Completion Time (TCT): Calculates the typical
amount of time needed to finish tasks.
Resource Utilization (RU): Assesses how well edge
and cloud resources work.
Energy Efficiency (EE): Determines the energy used
for each process or task.
The outcomes were contrasted with other
scheduling strategies, like edge-only and cloud-
only options.

5 Conclusion

Lastly, the thorny task scheduling issues in the
dynamic environment of smart manufacturing are
discussed. In this paper, whole manuscript
introduces CESMA, which combines the strengths
of NSGA-II and IMBO to give a multi-objective
approach excelling in efficiency, scalability, and
reliability enhancement in manufacturing
operations. With extensive evaluation using a
variety of metrics, CESMA showed its effectiveness.
It has superior task completion times, meaning it is
efficient, scalable, and adaptive to the change in
task volume. CESMA was better than other
optimization algorithms, including IPSO, IACO, RR,
and HH, in terms of energy consumption, defect
rate prevention, and general reliability. Its ability to
balance efficiency and reliability positions it as an
optimal solution for complex real-time industrial
environments. Looking ahead, the future scope of
CESMA looks very promising.
By using a hybrid optimization technique that
combines genetic algorithms and simulated
annealing, the study verifies a multi-objective task
scheduling strategy for optimizing cloud-edge
integration in smart manufacturing, addressing
latency, resource usage, and energy efficiency.
Performance measurements and realistic
simulation situations, such as dynamic workloads
and resource breakdowns, support its effective
trade-off balancing. With future potential in
adaptive learning for increased scheduling
efficiency, the method provides an Industry 4.0
solution that is scalable, durable, and energy-
efficient.
Future research will refine the algorithm, optimize
parameters, and enhance adaptability to the
evolving demands of smart manufacturing.
Integration with emerging IoT and AI technologies
promises improved task scheduling. As Industry
4.0 reshapes manufacturing, CESMA remains at the
forefront, driving innovation for the smart factories
of the future.
Task completion time, energy use, defect rate, and
dependability are among the five measures where
the suggested CESMA algorithm excels above the
others. Algorithm HH (9 seconds and 19 seconds,
respectively) and Algorithm RR, which take the
most time, are surpassed by CESMA, completing 10
tasks in 8 seconds and 50 tasks in 18 seconds.
Whereas Algorithm RR uses the most, 420 and 600,
respectively, CESMA uses the least, 350 Joules for
100 and 550 for 500 tasks. Starting at 2.0% for 100
jobs and declining to 1.2% for 500 tasks, CESMA
maintains the lowest defect rates among Algorithm

https://ajes.uoanbar.edu.iq/

34 Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16, 1, (2025) 21 ~ 35

Optimizing Cloud-Edge Integration for Task Scheduling in Smart Manufacturing Lines: A Multi-objective Method (Ali Hasan Husien)

RR, which has 2.8% and 1.9% for the same task
ranges. Algorithm HH has the lowest reliability,
ranging from 89% to 75%; CESMA has the highest,
beginning at 95% for 100 tasks and maintaining
81% for 500 tasks.

Funding

None.

Acknowledgements

We would like to extend our sincerest gratitude

to the esteemed Lfu University, specifically the

Computer Engineering Department, for allowing us

to use their state-of-the-art laboratory facilities in

the completion of our article. We appreciate the

department's commitment to fostering innovation

and research, and we are honored to have had the

opportunity to get assistance from their facilities.

Conflicts of Interest

The authors declare no conflict of interest.

References
[1] K. Kaur, S. Garg, G.S. Aujla, N. Kumar, J.J.

Rodrigues, and M. Guizani. Edge computing in

the industrial Internet of things environment:

Software-defined-networks-based edge-cloud

interplay. IEEE Communications

Magazine, 56(2), 2018. pp.44-51.

[2] Y. Wu, H.N. Dai, and H. Wang. Convergence of

blockchain and edge computing for secure and

scalable IIoT critical infrastructures in

Industry 4.0. IEEE Internet of Things

Journal, 8(4), 2020. pp.2300-2317.

[3] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman,

and D.O. Wn. Edge computing in the industrial

internet of things: Architecture, advances, and

challenges. IEEE Communications Surveys &

Tutorials, 22(4), 2020. pp.2462-2488.

[4] L. Zhou, L. Zhang, and B.K. Horn. Deep

reinforcement learning-based dynamic

scheduling in smart manufacturing. Procedia

Cirp, 93, 2020. pp.383-388.

[5] N. Iqbal, A.N. Khan, A. Rizwan, F. Qayyum, S.

Malik, R. Ahmad, and D.H. Kim. Enhanced

time-constraint aware tasks scheduling

mechanism based on predictive optimization

for efficient load balancing in smart

manufacturing. Journal of Manufacturing

Systems, 64, 2022. pp.19-39.

[6] J.C. Serrano-Ruiz, J. Mula, and R. Poler. Smart

manufacturing scheduling: A literature

review. Journal of Manufacturing Systems, 61,

2021. pp.265-287.

[7] X. Li, J. Wan, H.N. Dai, M. Imran, M. Xia, and A.

Celesti. A hybrid computing solution and

resource scheduling strategy for edge

computing in smart manufacturing. IEEE

Transactions on Industrial Informatics, 15(7),

2019. pp.4225-4234.

[8] J.C. Serrano-Ruiz, J. Mula, and R. Poler.

Development of a multidimensional

conceptual model for job shop smart

manufacturing scheduling from the Industry

4.0 perspective. Journal of Manufacturing

Systems, 63, 2022. pp.185-202.

[9] H. Ghorbel, J. Dreyer, F. Abdalla, V.R.

Montequín, Z. Balogh, E. Garcia, I. Bundinská,

A. Gligor, L.B. Iantovics, and S. Carrino. SOON:

Social Network of Machines to Optimize Task

Scheduling in Smart Manufacturing. In 2021

IEEE 32nd Annual International Symposium on

Personal, Indoor and Mobile Radio

Communications (PIMRC), 2021. (pp. 1-6).

IEEE.

[10] M.T. Zhou, T.F. Ren, Z.M. Dai, and X.Y. Feng.

Task scheduling and resource balancing of fog

computing in smart factory. Mobile Networks

and Applications, 2022. pp.1-12.

[11] J.C. Serrano-Ruiz, J. Mula, and R. Poler. Toward

smart manufacturing scheduling from an

ontological approach of job-shop uncertainty

sources. IFAC-PapersOnLine, 55(2), 2022.

pp.150-155.

[12] A.S. Sofia, and P.G. Kumar. Multi-objective task

scheduling to minimize energy consumption

and makespan of cloud computing using

NSGA-II. Journal of Network and Systems

Management, 26, 2018. pp.463-485.

[13] D.K. Shukla, D. Kumar, and D.S. Kushwaha.

WITHDRAWN: Task scheduling to reduce

energy consumption and makespan of cloud

computing using NSGA-II. 2021.

Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16,1, (2025) 21 ~ 35 35

AJES P-ISSN: 1997-9428; E-ISSN: 2705-7440 https://ajes.uoanbar.edu.iq/

[14] W. Zhang, J. Xiao, S. Zhang, J. Lin, and R. Feng.

A utility-aware multi-task scheduling method

in cloud manufacturing using extended NSGA-

II embedded with game theory. International

Journal of Computer Integrated

Manufacturing, 34(2), 2021. pp.175-194.

[15] M. Yang, H. Ma, S. Wei, Y. Zeng, Y. Chen, and Y.

Hu. A multi-objective task scheduling method

for fog computing in cyber-physical-social

services. IEEE Access, 8, 2020. pp.65085-

65095.

[16] Z. Yin, F. Xu, Y. Li, C. Fan, F. Zhang, G. Han, and

Y. Bi. A multi-objective task scheduling

strategy for intelligent production line based

on cloud-fog computing. Sensors, 22(4), 2022.

p.1555.

[17] I. Strumberger, M. Tuba, N. Bacanin, and E.

Tuba. Cloudlet scheduling by hybridized

monarch butterfly optimization

algorithm. Journal of Sensor and Actuator

Networks, 8(3), 2019. p.44.

[18] B. Gomathi, S.T. Suganthi, K. Krishnasamy, and

J. Bhuvana. Monarch Butterfly Optimization

for Reliable Scheduling in Cloud. Computers,

Materials & Continua, 69(3), 2021.

[19] H. Faris, I. Aljarah, and S. Mirjalili. Improved

monarch butterfly optimization for

unconstrained global search and neural

network training. Applied Intelligence, 48,

2018. pp.445-464.

[20] B. Yang, Z. Pang, S. Wang, F. Mo, and Y. Gao. A

coupling optimization method of production

scheduling and computation offloading for

intelligent workshops with cloud-edge-

terminal architecture. Journal of

Manufacturing Systems, 65, 2022. pp.421-438.

[21] Z. Zhou, L. Xu, X. Ling, and B. Zhang, 2023.

Digital-twin-based job shop multi-objective

scheduling model and strategy. International

Journal of Computer Integrated Manufacturing,

pp.1-21.

[22] R. Rashidifar. Optimization of Multi-objective

Resource Scheduling in Cloud Manufacturing

Environment via Integrating Reinforcement

Learning and Deep Neural Network (Doctoral

dissertation, The University of Texas at San

Antonio). 2023.

[23] Y. Zhang, Y. Liang, B. Jia, and P. Wang.

Scheduling and Process Optimization for

Blockchain-Enabled Cloud Manufacturing

Using Dynamic Selection Evolutionary [23]

Zhang, Y., Liang, Y., Jia, B. and Wang, P., 2022.

Scheduling and Process Optimization for

Blockchain-Enabled Cloud Manufacturing

Using Dynamic Selection Evolutionary

Algorithm. IEEE Transactions on Industrial

Informatics, 19(2), 2022. pp.1903-1911.

[24] W. Wang, T. Hu, and J. Gu. Edge-cloud

cooperation-driven self-adaptive exception

control method for the smart

factory. Advanced Engineering Informatics, 51,

2022. p.101493.

[25] I. Srivastava, and H. Hashmi. December. Multi-

Cloud-based Task Scheduling using Many

Objective Intelligent Techniques in IoT.

In 2022 Second International Conference on

Advanced Technologies in Intelligent Control,

Environment, Computing & Communication

Engineering (ICATIECE), 2022. (pp. 1-6). IEEE.

[26] P. Shukla, and S. Pandey. MAA: multi-objective

artificial algae algorithm for workflow

scheduling in heterogeneous fog-cloud

environment. The Journal of Supercomputing,

2023. pp.1-43.

[27] L. Liu, H. Chen, and Z. Xu. SPMOO: A Multi-

objective Offloading Algorithm for Dependent

Tasks in IoT Cloud-Edge-End

Collaboration. Information, 13(2), 2022. p.75.

[28] J. Wang, and D. Li. Task scheduling is based on

a hybrid heuristic algorithm for smart

production lines with fog

computing. Sensors, 19(5), 2019. p.1023.

https://ajes.uoanbar.edu.iq/

