A Review on Factors Affecting the Adsorption of Heavy Metal Using Different Biosorbents

Suha Mahdi Salih

Department of Chemical Engineering, College of Engineering, University of Anbar, Ramadi 310011, Iraq

Email: suha.mahdi82@uoanbar.edu.iq; ORCID:https://orcid.org/0000-0002-5289-7409

ABSTRACT

Agricultural, industrial, and household debris can be employed as biosorbents to extract heavy metals from water that has been contaminated. Kitchen waste includes, among other things, peels from promotional gates, lemons, avocados, apples, kiwis, watermelons, and onions. Moreover, coffee and tea grounds are considered to be household refuse. This review illustrates the scholarly investigations that explored the potential of various waste materials as adsorbents for wastewater treatment. An extensive array of experiments was conducted to determine the variables that influence the capacity of these materials to adsorb heavy metals. To undertake the experiments above, different concentrations of biosorbent were introduced into the effluent at various contact times and pH levels. The researchers investigated the effects of varying these parameters and found that the biosorbent's ability to adsorb heavy metals is directly proportional to these factors. The results and conclusion indicated that the impact of biosorbent concentration and contact duration on the pH of contaminated water was assessed. To encourage the incorporation of industrial, agricultural, and household refuse into water treatment processes rather than permitting it to accumulate as an environmental hazard.

1. Introduction

Heavy metal water contamination is hazardous because heavy metals build up in the human body and damage several organs, including the kidney, central nervous system, liver, bones, lungs, brain, and placenta [1]. Furthermore, a host of health issues, including hepatic, immunological, reproductive, and developmental damage, are brought on by heavy metal exposure in humans. [2] Both carcinogenic and noncarcinogenic effects [3] Water polluted by heavy metals and its contaminants: Worldwide heavy metal (HM) pollution of waterways is caused by the mining, lead acid batteries, industrial coolant, smelting, electroplating, ceramics, fluorescent lamps, bangle industry, fuel combustion, paint sludge, incineration, salts manufacturing, spent catalyst, leather tanning, and hospital waste sectors. [4].
The mining, pharmaceutical, medical, and heavy metal processing sectors are rivers' primary sources of heavy metal pollution. Heavy metals have accumulated in aquatic habitats due to the growth of industrial development, and living things have been able to detect them there. Since then, these metals have made their way up the food chain, severely impairing the central nervous and reproductive systems. Furthermore, human health is at risk due to excessive levels of heavy metals in the body [5, 6]. HMs are a serious problem since they are not biodegradable and may accumulate in organisms, leading to illnesses and other negative consequences. [7] Heterogeneous photocatalysts and bioremediation are used to remove heavy metals from wastewater. Among the procedures that have been used are adsorption on activated carbons and ion-exchange resins, precipitation, electrodeposition, solvent extraction, phytoremediation, ultrafiltration, and coagulation/flocculation [8,9,10,11,12]. Heavy metals may be eliminated using chemical and physical methods [13, 14]. Physical separation procedures include hydrodynamic classification, mechanical screening, flotation, gravity concentration, electrostatic separation, attrition scouring, and magnetic separation. [15] Convective chemical techniques such as electrochemical treatments, membrane filtration, ion exchange, chemical precipitation, coagulation and flocculation, and electrodialysis may remove heavy metals from wastewater. [16] Alternatives that are less expensive and better for the environment must be used since these techniques are costly and harmful. Biosorption is an additional method. Ions are moved from the solution phase to the solid phase via sorption. Biosorption is made up of adsorption and precipitation processes. Adsorbents from natural sources, modified biopolymers, industrial waste, and agricultural residue are all used for heavy metal adsorption [17, 18]. Adsorption has been the subject of several investigations using adsorbents sourced from various materials, such as red soil and coal [19, [20]. The following are examples of industrial by-products: hydrous titanium oxide [28,29], waste iron and iron slags [30], fly ash [31], biomass [24], photocatalytic beads [23], nanoparticles [22], biomass [21], and industrial waste from fertilizer [25]. Moreover, organic materials like rice straw, coconut shells, rice husks, hazelnut shells, jackfruit, pecan shells, maize kernels, or husks may be used to create adsorbents. These adsorbents may be made into activated carbon by heating them, improving heavy metal adsorption [32, 33].

Conventional heavy metal removal is costly and produces hazardous chemical sludge [34, 35]. As such, it is essential to use low-cost and widely accessible methods. This is where biosorption enters the picture. It uses living or non-living microbes that can adsorb heavy metals from aqueous solutions [36], including plant and animal remnants [37, 38] and agricultural waste. For instance, adsorbents made of cellulose lignin material show excellent removal efficiency for various heavy metals [39].

The purpose of this study is to compile the findings from earlier research that used various low-cost materials as heavy metal absorbents from wastewater and to conclude these findings regarding the different factors influencing the adsorption process' ability to develop the absorption process. 2. Supplies and methods 2.1 Materials or Biosorbents. Many writers have used various biosorbent materials from industrial, agricultural, animal, plant, and food waste to remove heavy metals from polluted water. Tables 1 and 2 provide the materials stated before.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Heavy Metal Removed</th>
<th>Conclusions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>snail shell powder</td>
<td>Cadmium (II) and Iron (II)</td>
<td>The optimum physical condition was investigated, such as contact time, agitation speed, shell powder dosage, and pH. The maximum adsorption for Cadmium (II) and Iron (II) was 588 %, 559.99%, respectively, Langmuir and Freundlich isotherm models used to fit adsorption isotherm. demonstrated the capability of producing active carbon from cluster stalks, a byproduct of viticulture. Following a pseudo-second-order kinetic model. At equilibrium, the Langmuir isotherm model was fitted.</td>
<td>,Open [28]</td>
</tr>
<tr>
<td>winemaking waste (cluster stalks)</td>
<td>Pb^{2+}</td>
<td>natural material had a high ability to remove heavy metals</td>
<td>,[40]</td>
</tr>
<tr>
<td>bark, chitosan,xanthate,zeolite,clay,peat moss, seaweed and dead biomass</td>
<td>cadmium, chromium, lead, and mercury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Metal Ion Sorption Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tree bark</td>
<td>As a low-cost biosorbent, removal with unmodified tree bark was comparatively effective and thus acceptable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leaf, stem and root</td>
<td>Chromium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytomass of Quercus ilex (holly oak)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus Niger, Penicillium chrysogenum, Rhizopus Nigerians, Ascophyllum nodosum, Sargassum natans, Chlorella fusca, Oscillatoria angustissima, Bacillus Firmus and Streptomyces sp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dead and live anaerobic biomass</td>
<td>Pb, Zn, Cd, Cr, Cu and Ni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Khriet, which is a substance found in the legs of typha Domingensis</td>
<td>dead anaerobic biomass more effective in removing Pb(II)Cr(III)Cd(II) ions from wastewater than live anaerobic biomass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>smectite clay particles, cassava waste, sugar bagasse, dried water hyacinth stems, brake of pine untreated and treated with algae sawdust of pine and absol (sand, lime, cement, and water)</td>
<td>dead anaerobic biomass more effective in removing Pb(II)Cr(III)Cd(II) ions from wastewater than live anaerobic biomass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>expanded perlite</td>
<td>Cu(II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>denim fiber scraps</td>
<td>(Pb²⁺, Cd²⁺, Zn²⁺ and As)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombax Costatum Calyx</td>
<td>Fe³⁺, Pb⁺⁺, Zn⁺⁺, Cr⁺⁺⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>banana trunk</td>
<td>Cu, As, Pb and Zn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rice husk</td>
<td>heavy metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oil-free Moringa oleifera cake and sweet potato peel</td>
<td>Cr (VI) ions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As per the study, the root is most effective in the metal adsorption. Using dead anaerobic biomass is an economical method with no chemical sludge.

The expanded perlite has an exceptional capacity to absorb Cu(II) from industrial effluent. The improved surface metal-binding ability of the biosorbent may be ascribed to the alteration of the bio sorbent by oil-free Moringa oleifera cake and sweet potato peel. It was also discovered that denim fiber fragments had sorption capacities more significant than 1.5 mg/g for aqueous solution As (V).
A Review on Factors Effecting The adsorption of Heavy Metal Using Different Biosorbents

Suha Mahdi Salih

Anbar Journal of Engineering Science, 15, 1, (2024) 25 ~ 40

Table 2. Kitchen waste used as bio-sorbent

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Heavy Metal Removed</th>
<th>Conclusions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>walnut shell and lemon peel</td>
<td>Pb(II)</td>
<td>The ability of acid and/or base-activated walnut shell and lemon peel to remove Pb(II) from the water also studied the ability of activation to improve the adsorption capacity pseudo-second order kinetic model was used to determine the adsorption rate also found Freundlich, model. Was the best one to find the equilibrium data</td>
<td>[26]</td>
</tr>
<tr>
<td>eggshell membrane</td>
<td>Au, Pt, and Pd</td>
<td>The efficacy of eggshell membrane in the removal of heavy metals The concentrations of gold (Au), platinum (Pt), and palladium (Pd) in an aqueous solution are 55, 25, and 22, respectively.</td>
<td>[59]</td>
</tr>
<tr>
<td>almond skin, walnut shell, sawdust, rice bran,</td>
<td>Cd (II), Cr (II), Ni (II), and Pb (II)</td>
<td>The removal effectiveness of these adsorbents was compared with two conventional materials, activated carbon and an ion exchange resin. The researchers discovered that the most effective removal method was accomplished using discarded eggshells, which exhibited a performance comparable to that of activated carbon.</td>
<td>[60]</td>
</tr>
<tr>
<td>banana , kiwi and tangerine peels</td>
<td>Cd$^{2+}$, Zn$^{2+}$ and Cr$^{3+}$</td>
<td>The experimental findings demonstrated that the peels of kiwi and tangerine exhibited superior efficacy compared to banana peels in the process of heavy metal removal.</td>
<td>[61]</td>
</tr>
</tbody>
</table>
Pomegranate Used with carbonization and modification with iron ions to remove lead from aqueous solution and found that the optimum conditions contact time of chemical adsorption is 90 min, pH was selected within 6.0-6.5, initial Concentration 6333 ppm and the adsorbent dose 1.0g/100 ml.

It was discovered that apart from its use as a biosorbent for heavy metal adsorption, eggshell had the potential to serve as a substitute for conventional sand filter medium. Rather than sand. The use of a mixture comprising of egg shell powder and Chitosan is a viable alternative to using a sand filter, exhibiting notable efficacy in removing Pb (97.8%) and Cu (78.11%).

The researcher discovered that potato peel had a higher capacity for copper adsorption compared to banana peel.

They found that these materials are available and less expensive bio sorbent. The factors that affected the biosorption also studied. These factors are temperature and pH so they must be optimized.

They studied the parameter that effected the adsorption capacity such as contact time, pH, metal concentration, sorbent weight and temperature.

They investigated the effect initial concentration, pH, temperature and contact time on the removal of Co (III) and she found that the optimum results, initial Co (III) (5mg/L) contact time 90min, pH 2, temperature 30C also she found that the best agent in the process is 0.1 M ammonia chloride.

They found the factors affecting the removal of heavy metal are initial concentration, sorbent dose, pH, and temperature.

The effect of experimental parameter studied such as pH, weight of sorbent, contact time, temperature and concentration of metal all affect the capacity to adsorb.

The study examined the factors that affected the adsorption capability, including temperature, contact duration, pH, adsorbent dosage, and beginning metal concentration. The investigation found that starting Cd content, pH, adsorbent dosage, and contact duration all had an impact on removal efficiency. At a pH of 5, 90 minutes of contact time, and 10 g/L of adsorbent, the maximum efficiency of Cd adsorption was 99.6333%. The isotherm data for the Langmuir and Freundlich isotherm models fit the data.
A Review on Factors Effecting The adsorption of Heavy Metal Using Different Biosorbents (Suha Mahdi Salih)

Potato peel: Cu^{2+}, Pb^{2+} and Ni^{2+}

Mango leave: Cu (II) ion

Chicken eggshells, banana peels, and pumpkin: Cu and Pb

Tea waste: Ni (II) and Cu (II)

Pomegranate peels: Zinc, chromium and nickel

Zalacca edulis peel: Cu^{+2}

Banana peel (Musa sapientum): lead, copper, zinc and nickel metal ions

Minced banana peel: copper and lead

Eggshells: many different HMs

Eggshells: lead

Potato peel: Cu

Banana peels: zinc, chromium and nickel ions

Potato peel: $As(III), Pb^{2+}$ and Hg^{2+}

Watermelon shell: Cu (II)

Watermelon rind: zinc

Acceptably, and kinetic analysis revealed that the adsorption kinetics followed a second-degree kinetic adsorption model. Temperature, contact duration, and pH all affect removal efficiency.

The impact of agitation rate, pH, particle size, contact duration, and chelating agent presence were investigated. This research looked at the impacts of many variables, including pH, agitation speed, and contact duration. It discovered that at pH 7 and 100 rpm, the best removal was accomplished in 90 minutes. They discovered that removal efficiencies were more impacted by pH than by temperature. At 6333 °C, the greatest removal efficiencies of Cu (II) (59%) and Ni (II) (43%), were noted.

Three parameters were examined that affected the adsorption capacity: pH, contact duration, and temperature. The rate of adsorption was confirmed by a pseudosecond order system after the initial concentration and pH values were examined.

They discovered that when metal concentration increased, so did metal sorption. They discovered that the adsorption capacity increased beyond pH = 3 and that the kinetic adsorption achieved equilibrium at 10 minutes.

From aqueous solution, where pH, egg concentrations, and contact duration all impacted removal efficiency. The high concentrations of calcium and carbon and the high porosity and availability of functional groups on the eggshell surface were responsible for the removal's success. The contact time, initial pH, and eggshell dose affected removal efficiency.

They discovered that the adsorbent dosage, starting Cu concentration, pH, and contact duration all affected the removal effectiveness. With an adsorbent dosage of 5 g and an initial Cu centration of 10 ppm, an optimal Cu removal efficiency of 75.5% was attained at ambient temperature and pH 6.

Three types of bananas were used: powder, dried little chunks, and fresh. The findings showed that although fresh bananas provided the greatest outcomes in terms of eliminating chromium and nickel, powdered bananas eliminated all zinc. Dried peels had the lowest bioremoval capacity. In addition, the environmental effects of pH, temperature, and contact duration were investigated. They found that pH was the most important parameter affecting biosorption.

The effects of temperature, agitation speed, dose, time, concentration, pH, and particle size were studied. The monolayer adsorption capacity was 111.1 mg/g, found from the Langmuir adsorption equation. Pseudo-second-order kinetics was suggest to find kinetic measurement.
the optimum condition (zinc concentration, contact time, biosorbent amount, and pH) was determined

<table>
<thead>
<tr>
<th>Cucumis sativus peel</th>
<th>Pb(II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>waste tea leaves</td>
<td>Pb</td>
</tr>
<tr>
<td>pomegranate peel</td>
<td>Cr (VI)ions</td>
</tr>
</tbody>
</table>

the initial metal concentration, amount of adsorbent, temperature, contact time, and pH all affected Pb (II) adsorption, a maximum removal efficiency of 97.9%.

The temperature variation was studied and found that the process is endothermic.

2.2 Experimental Procedure.

1. To create a powder, the byproducts of the different materials listed in Tables 1 and 2 above were desiccated and ground into a fine powder. This process created the adsorbent.
2. Use polluted water to test an adsorbent's ability to absorb heavy metals.
3. Use the pH of the polluted water to estimate the amount of heavy metals present.
4. Transfer the polluted water into a known volume of the step 1 adsorbent and let it come into contact for a predetermined amount of time.
5. After the adsorbent has had its contact period, ascertain the amount of heavy metal that is still in the polluted water.
6. The percentage of HM elimination was then calculated using the following equation: Percentage of removal = Ce/Wa × 100
 Wa: The concentration of HM at first (in mg/L) before adsorption? Ce: After adsorption, the equilibrium concentration of HM in solution (mg/L).
7. To ascertain how adsorbent dosage affects adsorption, repeat steps four through six with different adsorbent concentrations. To find out how contact time affects adsorption, carry out the previously indicated steps (4) through (6) while adjusting the contact time.
8. Repeat steps 4 through 6 from the previous approach while changing the water's pH to see the impact of the change.

2.3 Further applications of biosorbent

For HM adsorption, a vast array of common waste biosorbents have been utilised. The efficacy of inexpensive adsorbents extends beyond the removal of HMs; they can also be utilised to remove other prevalent pollutants from wastewater, as illustrated in Table 3 below. A biosorbent is employed to absorb pollutants, including heavy metals, from refuse water.

Table 3 Adsorbent used to remove another pollutant from waste water.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Pollutant removed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>barley husks and eggshells</td>
<td>Levofloxacin is an antibacterial agent that becomes a high environmental risk when contaminating aquatic environments... reduce the microbial properties by killing pathogens organism</td>
<td>[92]</td>
</tr>
<tr>
<td>water melon rind</td>
<td>oil</td>
<td>[93]</td>
</tr>
<tr>
<td>eggplant peel</td>
<td>oil</td>
<td>[94]</td>
</tr>
</tbody>
</table>

Additionally, HMs from soil may be absorbed using cheap organic wastes. For example, potato peels and tea trash are successful sorbents for reducing the amount of mercury (Hg) in soil. More specifically, both waste sorbents decreased the Phaseolus vulgaris plant's absorption of heavy metals when it was planted in greenhouse conditions on polluted soil [95]. Previous studies have shown that heavy metals (HMs) are eliminated in two stages. HMs first attach themselves to the biosorbent's active surface sites. Then, by intraparticle diffusion, metal ions progressively permeate the adsorbent's pores [96]. This process is probably heavily influenced by the physiochemical characteristics of the heavy metal
to be adsorbed and the biosorbent. Additionally, HMs from soil may be absorbed using cheap organic wastes. For example, applying potato peels and tea residue to a soil sample to reduce mercury (Hg) toxicity worked well.

Table 4. Removal of heavy Metal Vs contact time

<table>
<thead>
<tr>
<th>Contact Time(min)</th>
<th>Ref [98]</th>
<th>Ref [99]</th>
<th>Ref [100]</th>
</tr>
</thead>
<tbody>
<tr>
<td>of Lead % adsorbent biochar from corn cobs waste</td>
<td>Removal of Lead % by using commercial activated carbon</td>
<td>Removal of Lead % by using green synthesized silica</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>23.4</td>
<td>29.72</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>41.6</td>
<td>42.7</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>60.2</td>
<td>27.6</td>
<td>56.06</td>
</tr>
<tr>
<td>40</td>
<td>64.8</td>
<td></td>
<td>68.17</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td>65.06</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>66.6</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>67.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>68.4</td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>68.8</td>
<td>51.4</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>55.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>56.2</td>
<td></td>
</tr>
</tbody>
</table>

The impact of parameters on the biosorbent’s ability to bind heavy metals. A few of the several variables that influence the adsorption of heavy metals via biosorption include the pH of the water, the amount of time the biosorbent is in contact with the heavy metals, and the dosage of the biosorbent. According to earlier research, contact time has the following effects on HM adsorption: Prior studies [7], [48], [74], [76], [82], [83], and [97] showed that heavy metal adsorption increased with contact time until equilibrium was reached. This allows the metal ions sufficient time to interact with all of the adsorption sites on the biosorbent, as seen in Fig. 1 and Table 4 [96]. As a result, all accessible sites were occupied, preventing further adsorption.

![Fig 1. Contact time vs. heavy metal removal using different adsorbents. Ref [98], [99], [100].](image)

- Effect of solution pH on HM adsorption.

Metal speciation, which affects the interaction between the metal ion and the active functional sites on the adsorbent, is another way to control an adsorbent’s effectiveness [101]. Phosphorus may affect adsorption in the same manner as pH rises at lower pH and can, therefore, compete with HM cations for the active sites of the biosorbent, leading to reduced removal of HMs (i.e., higher HM release) under too acidic circumstances [102]. Similar increases in HM adsorption with pH changes have been reported in other studies [7], [55]; [74], [76], [82], [83], [77], [73], [103]. This conclusion is shown in Table 5 and Fig 2.

Table 5. Removal of heavy metal vs. pH of wasted water

<table>
<thead>
<tr>
<th>pH</th>
<th>Ref [98]</th>
<th>Ref [99]</th>
<th>Ref [100]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal of lead % adsorbent biochar from corn cobs waste</td>
<td>Removal of lead % by using commercial activated carbon</td>
<td>Removal of lead % by using green synthesized silica</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20.8</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25.6</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32.8</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30.2</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig 2. pH of the water vs. heavy metal removal using different adsorbents. Ref [98], [99], [100].

- The effect of biosorbent dose on HM adsorption.

The observed enhancement in HM removal as the dose of the biosorbent increased, shown in Table 6 and Fig 3, can be ascribed to the augmented surface area of the adsorbent and the increased accessibility of more active binding sites. This result was consistent with numerous prior investigations [48], [53], [55], [82], [83], [84] [104] and was not unexpected.

Table 6 Removal of heavy metal vs dosage of biosorbent.

<table>
<thead>
<tr>
<th>Dosage g/l</th>
<th>Ref[99] commercial activated carbon</th>
<th>Ref [105] Almond Shells</th>
<th>Ref[98] adsorbent: biochar from corn cobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>0.5</td>
<td>26</td>
<td>555</td>
<td>676.8</td>
</tr>
<tr>
<td>1</td>
<td>15.3</td>
<td>555</td>
<td>676.8</td>
</tr>
<tr>
<td>1.5</td>
<td>80.4</td>
<td>72</td>
<td>5599</td>
</tr>
<tr>
<td>2</td>
<td>85</td>
<td>555</td>
<td>5599</td>
</tr>
<tr>
<td>3</td>
<td>89.3</td>
<td>555</td>
<td>5599</td>
</tr>
<tr>
<td>4</td>
<td>18.6</td>
<td>91.5</td>
<td>91.5</td>
</tr>
<tr>
<td>5</td>
<td>28.5</td>
<td>91.5</td>
<td>91.5</td>
</tr>
<tr>
<td>10</td>
<td>40.2</td>
<td>91.5</td>
<td>91.5</td>
</tr>
<tr>
<td>15</td>
<td>40.2</td>
<td>91.5</td>
<td>91.5</td>
</tr>
</tbody>
</table>

Table 6: Removal of heavy metal vs dosage of biosorbent.

Fig 3. Adsorbent dosage vs. removal of heavy metal by using different adsorbents. Ref [98], [99], [105].

3. Langmuir and Freundlich models

The amount of metal adsorbed onto the biosorbent \((q_e) \) was then calculated using equation 2 [106]

\[
q_e = \frac{C_i - C_e}{W} V \quad \ldots\ldots\ldots (2)
\]

Where \(C_i \): was the initial concentration of HM before adsorption (mg/L), \(C_e \): is the equilibrium concentration of HM in solution after adsorption (mg/L), \(V \) was the volume of the solution (L) and \(W \) was the weight of biosorbent added (g). The adsorption data where then fitted to the Langmuir or Freundlich isotherm model s

Adsorption Isotherm

A-Langmuir isotherm

According to the Langmuir equation, there is homogenous adsorption, meaning that each molecule on the surface has an identical sorption activation energy. Equation 3 [107], [108] represents the Langmuir isotherm in its linear version.

\[
\frac{1}{q_e} = \frac{1}{q_m b} + \frac{1}{q_m C_e} \quad \ldots\ldots\ldots (3)
\]

Where \(q_m \): is the maximum adsorption capacity (mg/g), \(b \): is the Langmuir constant (L/mg). The linear Langmuir equation is plotted in Fig 3.
Where C_e (mg/L) is the concentration of heavy metals in solution at equilibrium, K_L (L/g) is the Langmuir equilibrium constant, q_e (mg/g) is the quantity of adsorbate per unit weight of adsorbent, and q_m (mg/g) is the maximum capacity of adsorbed onto the adsorbent as a monolayer.

B-Freundlich isotherm

The Freundlich adsorption isotherm assumes adsorption to a heterogeneous surface where the linear form of this isotherm is expressed as Freundlich [109]:

$$\log q_e = \log K_F + \frac{1}{n} \log C_e$$

Where K_F (L/g) is the Freundlich constant, n (g/L) is the Freundlich exponent. In the studies [26],[28],[55],[64],[73],[77], adsorption rate expressed mathematically by Langmuir and Freundlich models.

Conclusion

The two primary benefits of using household, agricultural, and industrial waste to purify polluted water are waste reduction and the ability to purify heavy metal-laden water that is not economically viable for human consumption. The buildup of waste causes human organ damage and deadly illnesses. It was discovered that the water's pH, the amount of biosorbent used, and the length of contact all impacted the adsorption process. An assessment of the researchers' findings concerning these variables has been carried out. It was shown that the ability of residues to adsorb increases with these factors. Kitchen trash is used to examine these variables to remove heavy metals from wastewater. In addition to household garbage, heavy metals have also been absorbed from industrial and agricultural waste. This overview illustrates most research papers using organic waste for heavy metal adsorption from effluent.

References

https://doi.org/10.1007/s13762-012-0041-y

A Review on Factors Effecting The adsorption of Heavy Metal Using Different Biosorbents

(Suha Mahdi Salih)