Cover
Vol. 11 No. 2 (2020)

Published: November 15, 2020

Pages: 221-230

Research Paper

Performance Study of Fluent-2D and Flow-3D Platforms in the CFD Modeling of a Flow Pattern Over Ogee Spillway

Abstract

Recently, the investigations studies of simulating flow over spillways have increased using numerical models. Due to its important structure in the dams to pass flood wave to the downstream safely. Researches finding have shown that CFD (Computational fluid dynamics) models as the numerical method are a perfect alternative for laboratory tests. Performance analysis of the CFD platforms Ansys Fluent-2D and Flow-3D are presented, focus on finding the variations between the numerical results of the two programs to simulate the flow over ogee spillway. The present study treats the turbulence using RNG k-ε of RANS approach, and also use the Volume of Fluid (VOF) algorithm to track the water-air interaction. The Fluent-2D and Flow-3D accuracy are assessed by comparing representative flows variables (velocity; free surface profiles; pressure; and the turbulent kinetic energy). The results of both codes have been also compared with experimental data. The results of the analysis show an excellent agreement between the two platforms data, which could assist in the future by using both programs to calibrate each other, rather than traditionally relying on laboratory calibration models.

References

  1. Demeke, G. K.; Asfaw, D. H.; Shiferaw, Y. S. 3D Hydrodynamic Modelling Enhances the Design of Tendaho Dam Spillway, Ethiopia. Water 2019, 11 (1), 82. https://doi.org/10.3390/w11010082.
  2. Ammar; Isam; Zainab. Study the Effect of Spillway Locations on the Hydraulic Properties of Spillway. Ciência e Técnica Vitivinícola 2016, No. 0254–0223.
  3. Reese, A. J.; Maynord, S. T. Design of Spillway Crests. J. Hydraul. Eng. 1987, 113 (4), 476–490. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:4(476).
  4. Ho, D. K. H.; Riddette, K. M. Application of Computational Fluid Dynamics to Evaluate Hydraulic Performance of Spillways in Australia. Aust. J. Civ. Eng. 2010, 6 (1), 81–104. https://doi.org/10.1080/14488353.2010.11463946.
  5. Li, S.; Cain, S.; Wosnik, M.; Miller, C.; Kocahan, H.; Wyckoff, R. Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. J. Hydraul. Eng. 2011, 137 (1), 66–74.
  6. Samadi-Boroujeni, H.; Abbasi, S.; Altaee, A.; Fattahi-Nafchi, R. Numerical and Physical Modeling of the Effect of Roughness Height on Cavitation Index in Chute Spillways. Int. J. Civ. Eng. 2019, 1–12.
  7. Jahad, U.; Al-Ameri, R.; Chua, L.; Das, S. Investigating the Effects of Geometry on the Flow Characteristics and Energy Dissipation of Stepped Spillway Using Two-Dimensional Flow Modelling; Department of Civil and Environmental Engineering, Faculty of Engineering …, 2018; pp 289–296.
  8. Hekmatzadeh, A. A.; Papari, S.; Amiri, S. M. Investigation of Energy Dissipation on Various Configurations of Stepped Spillways Considering Several RANS Turbulence Models. Iran. J. Sci. Technol. Trans. Civ. Eng. 2018, 42 (2), 97–109. https://doi.org/10.1007/s40996-017-0085-9.
  9. Yusuf, F.; Micovic, Z. Prototype-Scale Investigation of Spillway Cavitation Damage and Numerical Modeling of Mitigation Options. J. Hydraul. Eng. 2020, 146 (2), 04019057. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001671.
  10. Rahimzadeh, H.; Maghsoodi, R.; Sarkardeh, H.; Tavakkol, S. Simulating Flow Over Circular Spillways by Using Different Turbulence Models. Eng. Appl. Comput. Fluid Mech. 2012, 6 (1), 100–109. https://doi.org/10.1080/19942060.2012.11015406.
  11. Dolon Banerjee, B. J. CFD ANALYSIS OF OGEE SPILLWAY HYDRUALICS. Int. J. Mod. Trends Eng. Res. 2018, 5 (07).
  12. Al-Zubaidy; Alhashimi. Numerical Simulation of Two-Phase Flow Over Mandali Dam Ogee Spillway. 2013, 2.
  13. Dargahi, B. Experimental Study and 3D Numerical Simulations for a Free-Overflow Spillway. J. Hydraul. Eng. 2006, 132 (9), 899–907. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:9(899).
  14. Sartaj, M.; Beirami, K.; Fooladgar, A. M. Analysis of Twodimentional Flow over Standard Ogee Spillway Using RNG Turbulence Model. In 7th International Congress on Civil Engineering, Tarbiat Modares University, Tehran, Iran; 2006.
  15. Serafeim, A.; Avgeris, L.; Hrissanthou, V.; Bellos, K. Experimental and Numerical Simulation of the Flow Over a Spillway. Eur. Water 2017, 57, 253–260.
  16. Savage, B. M.; Johnson, M. C. Flow over Ogee Spillway: Physical and Numerical Model Case Study. J. Hydraul. Eng. 2001, 127 (8), 640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640).
  17. Ghanbari, R.; Heidarnejad, M. Experimental and Numerical Analysis of Flow Hydraulics in Triangular and Rectangular Piano Key Weirs. Water Sci. 2020, 1–7. https://doi.org/10.1080/11104929.2020.1724649.
  18. Yildiz, A.; Yarar, A.; Kumcu, S. Y.; Marti, A. I. Numerical and ANFIS Modeling of Flow over an Ogee-Crested Spillway. Appl. Water Sci. 2020, 10 (4), 90. https://doi.org/10.1007/s13201-020-1177-4.
  19. Akintorinwa, O. J.; Ajayi, C. A.; Oyedele, A. A. Determination and Establishment of Empirical Relationship between Magnetic Susceptibility and Mechanical Properties of Typical Basement Rocks in Southwestern Nigeria. Int. J. Phys. Sci. 2020, 15 (2), 70–89. https://doi.org/10.5897/IJPS2020.4870.
  20. Al-Qadami, E. H. H.; Abdurrasheed, A. S.; Mustaffa, Z.; Yusof, K. W.; Malek, M. A.; Ghani, A. A. Numerical Modelling of Flow Characteristics over Sharp Crested Triangular Hump. Results Eng. 2019, 4, 100052. https://doi.org/10.1016/j.rineng.2019.100052.
  21. Dong; Wang; Vetsch; Boes; Tan. Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water 2019, 11 (10), 1956. https://doi.org/10.3390/w11101956.
  22. Macián-Pérez, J. F.; García-Bartual, R.; Huber, B.; Bayon, A.; Vallés-Morán, F. J. Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water 2020, 12 (1), 227. https://doi.org/10.3390/w12010227.
  23. Fadaei, K. E.; Barani, G. A. Numerical Simulation of Flow over Spillway Based on the CFD Method. 2014.
  24. Dehdar-behbahani, S.; Parsaie, A. Numerical Modeling of Flow Pattern in Dam Spillway’s Guide Wall. Case Study: Balaroud Dam, Iran. Alexandria Eng. J. 2016, 55 (1), 467–473. https://doi.org/10.1016/j.aej.2016.01.006.
  25. Aydin, M. C.; Isik, E.; Ulu, A. E. Numerical Modeling of Spillway Aerators in High-Head Dams. Appl. Water Sci. 2020, 10 (1), 42. https://doi.org/10.1007/s13201-019-1126-2.
  26. Imanian, H.; Mohammadian, A. Numerical Simulation of Flow over Ogee Crested Spillways under High Hydraulic Head Ratio. Eng. Appl. Comput. Fluid Mech. 2019, 13 (1), 983–1000. https://doi.org/10.1080/19942060.2019.1661014.
  27. Bayon, A.; Valero, D.; García-Bartual, R.; Vallés-Morán, F. ​José; López-Jiménez, P. A. Performance Assessment of OpenFOAM and FLOW-3D in the Numerical Modeling of a Low Reynolds Number Hydraulic Jump. Environ. Model. Softw. 2016, 80, 322–335. https://doi.org/10.1016/j.envsoft.2016.02.018.
  28. Aydin, M. C.; Ozturk, M. Verification and Validation of a Computational Fluid Dynamics (CFD) Model for Air Entrainment at Spillway Aerators. Can. J. Civ. Eng. 2009, 36 (5), 826–836. https://doi.org/10.1139/L09-017.
  29. Liu, X.; Zhang, J. Computational Fluid Dynamics; Liu, X., Zhang, J., Eds.; American Society of Civil Engineers: Reston, VA, 2019. https://doi.org/10.1061/9780784415313.
  30. Versteeg, H. K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Pearson education, 2007.
  31. ANSYS, User Manual, 2020.
  32. Flow-3d, User Manual. 2016.
  33. Andersson, B.; Andersson, R.; Håkansson, L.; Mortensen, M.; Sudiyo, R.; Van Wachem, B. Computational Fluid Dynamics for Engineers; Cambridge University Press, 2011.
  34. Sarwar, M. K.; Ahmad, I.; Chaudary, Z. A.; Mughal, H.-U.-R. Experimental and Numerical Studies on Orifice Spillway Aerator of Bunji Dam. J. Chinese Inst. Eng. 2020, 43 (1), 27–36. https://doi.org/10.1080/02533839.2019.1676652.
  35. Hirt, C. .; Nichols, B. . Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981, 39 (1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.
  36. Bayon, A.; Toro, J. P.; Bombardelli, F. A.; Matos, J.; López-Jiménez, P. A. Influence of VOF Technique, Turbulence Model and Discretization Scheme on the Numerical Simulation of the Non-Aerated, Skimming Flow in Stepped Spillways. J. Hydro-environment Res. 2018, 19, 137–149. https://doi.org/10.1016/j.jher.2017.10.002.
  37. Hirt, C. W.; Sicilian, J. M. A Porosity Technique for the Definition of Obstacles in Rectangular Cell Meshes. In International Conference on Numerical Ship Hydrodynamics, 4th; Washington, DC: The National Academies Press, 1985; pp 450–468.
  38. Al-Hashimi, S. A. M.; Huda M. Madhloom; Rasul M. Khalaf; Thameen N. Nahi; Nadhir A. Al-Ansari. Flow over Broad Crested Weirs: Comparison of 2D and 3D Models. J. Civ. Eng. Archit. 2017, 11 (8), 769–779. https://doi.org/10.17265/1934-7359/2017.08.005.
  39. Daneshkhah, A. R.; Vosoughifar, H. R. A Mesh Convergence Study for the Flow over Ogee Spillways. 2010.
  40. Hirsch, C. Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics; Elsevier, 2007.
  41. Al-Zubaidi, R. Z.; Khalaf, R. M.; Salman, S. Hydraulic Performance Of Mandali Dam Spillway In Iraq. J. Environ. Stud. [JES] 2010, 5, 35–48.
  42. Azimi, H.; Shabanlou, S.; Kardar, S. Flow Field within Rectangular Lateral Intakes in the Subcritical Flow Regimes. Model. Earth Syst. Environ. 2019, 5 (2), 421–430. https://doi.org/10.1007/s40808-018-0548-4.
  43. Kumcu, S. Y. Investigation of Flow over Spillway Modeling and Comparison between Experimental Data and CFD Analysis. KSCE J. Civ. Eng. 2017, 21 (3), 994–1003. https://doi.org/10.1007/s12205-016-1257-z.
  44. Shojaeian, Z.; Dalir, A. H.; Farsadizadeh, D.; Salmasi, F. Investigation of Hydraulic Jump Characteristics in Divergent Rectangular Sections on Inverse Slope. 2011.
  45. Shahheydari, H.; Nodoshan, E. J.; Barati, R.; Moghadam, M. A. Discharge Coefficient and Energy Dissipation over Stepped Spillway under Skimming Flow Regime. KSCE J. Civ. Eng. 2015, 19 (4), 1174–1182. https://doi.org/10.1007/s12205-013-0749-3.