Main Subjects : Civil Engineering


The effect of Corroded Longitudinal Steel Bars on Flexural Behavior of Reinforced Concrete Beams

Tasneem Salah; Yousif A. Mansoor; Mahmoud Khashaa Mohammed

Anbar Journal of Engineering Sciences, 2022, Volume 13, Issue 2, Pages 122-132
DOI: 10.37649/aengs.2022.176366

This study aims to examine the relationship between the corrosion rate of longitudinal tensile steel bars and the maximum flexural strength of reinforced concrete RC beams. The study's methodology is designed to show the structural behavior of corroded and non-corroded RC beams, such as ultimate load, deflection, stiffness, crack patterns, and failure mode. Three rectangular beams were cast with dimensions (150× 200 ×1200) mm, and all specimens have the same amount of longitudinal and transverse reinforcement and the same concrete strength. The major parameter is the theoretical mass loss level due to corrosion (0, 10, 15) %. Electrochemical technique was used to accelerate the corrosion in the longitudinal tensile bars. All RC beams were tested under four-point monotonic loading. The test results confirm that the cracking load in corroded beams decreased by 25% comparative to the non- corroded beam. The increase of the percent of corrosion experimental mass loss by 8.25 and 14.15 % decreased the ultimate load by about 14 % and 27%, respectively. This reduction coincided with the decrease in deflection values in mid-span for the ultimate load, which decreased by 53.9% and 46.3%. However, the flexural stiffness was reduced by 13.4 and 15.6% for corroded beams with mass loss (8.25 and 14.15), respectively, compared to the control beam (non-corroded RC beam).

The Evaluation of Living spaces and Service parts in The Dwell-ing Units in single-family Housing Projects in Erbil city

Mand Ibrahim Aziz; Siham Musheer Kareem

Anbar Journal of Engineering Sciences, 2022, Volume 13, Issue 2, Pages 1-13
DOI: 10.37649/aengs.2022.176352

Housing is one of the main concerns raising critical problems in the Kurdistan Region. Due to the fast growth of the urban population through the last period, the Kurdistan-Investment Board was ongoing in construction of effective amount of housing estates by investment companies. Due to the rapid increase in population, many housing estate projects neglected specific family requirements, with low commitment to housing standards, quality of dwellings, and the resident's lifestyles. This study investigates living space and services parts of dwellings in those estates, finding out the factors that direct residential satisfaction supported by fixing correlations among determinants of overall satisfaction.
The adopted methodology consists of evaluation based on two steps, the first was by a technical assessment using checklist comparing spaces with Iraqi standards, while the second part was through survey of resident's satisfaction. Field data collection had consisted of a questionnaire list and data collection performed for five housing projects (10 types of dwelling units covered by eighty-three samples) selected in Erbil city. Then the questionnaire results were analyzed using the SPSS program using correlations, regression, and descriptive statistics. Low commitment to Iraqi Standards was obvious in most cases. Results also showed that dwellers were satisfied with their dwelling units in cases despite differences with Iraqi urban housing standards. For instance, in two bedrooms dwellings, areas of services were below the standard by 21% while the resident's satisfaction in this group varied between neutral and satisfied. It had been found a clear correlation between indicators of dwellings units’ spaces. The regression has shown that the indicators of the kitchen location's size and shape highly affected the householder's satisfaction. The descriptive statistics have shown the satisfaction level mostly been neutral in all projects. Finally, the study suggests some recommendations regarding dwelling units in addition to the need to amend the Iraqi standards of housing.

Effect of Natural Fibers from Palm Fronds on The Mechanical Properties of Concrete

Alhareth Mouthanna

Anbar Journal of Engineering Sciences, 2022, Volume 13, Issue 2, Pages 69-73
DOI: 10.37649/aengs.2022.176359

Scientists have recently started looking for new ecologically friendly and sustainable materials. Construction materials are among the numerous widely employed materials, and it is normally acknowledged that they have an apparent detrimental influence on the environment. Thus, the contribution of this paper is to describe the palm frond natural fibers' effect on concrete's mechanical characteristics. Since concrete is a brittle material, the goal of this research is to increase the tensile strength of concrete by using organic fibers (palm frond fibers), a waste product. In order to determine the ideal percentage of fibers, the following percentages were tested: 0.25, 0.5, 0.75, and 1% by volume of concrete. On dry density, compressive strength, and tensile strength, the impacts of fibers were investigated. The density of concrete decreased with increasing fiber ratios. The compressive strength slightly decreased, while the splitting strength significantly improved. According to the results, the best amount of palm frond fibers that can be add to concrete is 0.75% by volume.

Assessment Performance at Al- Thawra Signalized Intersection in Babil City

Ali Salah Mahdi; Nahla Yassub Ahmad

Anbar Journal of Engineering Sciences, 2022, Volume 13, Issue 2, Pages 84-90
DOI: 10.37649/aengs.2022.176361

Hilla cities center of province Babil is one of the most important cities in Iraq 100 km (62 mi) south of Baghdad .its relate  the Governorate Baghdad with Governorates south                                            Al-Thawra signalized intersection is one of the most important intersections   in AL-Hilla city Being a major crossing point to the governorates of holy Karbala and Baghdad.The excessive traffic volumes, during the peak periods (at morning and evening), of vehicles that entering the intersection increase traffic density, reduce travel speed, increase travel time, and increase the delay values This paper aims to assess the traffic performance of Al-thawra signalized intersection in Babil city that is consistent with the existing conditions and intersection's geometric properties. For all approaches, video recording has been used to collect traffic volume data. These data are taken out of videos from Babil police cameras (department of communications and information systems)..The intersection was evaluated and analyzed using the SYNCHRO 10.0 software, and the best option was selected. The outcome of the evaluation process indicated that the intersection is operated at the level of service (LOS F) and with a control delay of 162.5 seconds.by recommending a variety of strategies, ranging from signal optimization to geometric enhancements. The suggestion of widening the pavement in the north-south direction was found to be the best solution.  resulting in a decrease in vehicle delays from 162.2 seconds to 95.4 seconds  and the level of service remains constant  (LOS F)  considered an acceptable and cost-effective solution to the intersection's problems.

Effect of Duration and Intensity of Burning on Columns Exposure to Cyclic Fire

nuha shakir; Ammar Yasir Ali

Anbar Journal of Engineering Sciences, 2022, Volume 13, Issue 2, Pages 91-98
DOI: 10.37649/aengs.2022.176362

The term "fire safety engineering" refers to the process of applying scientific and engineering principles to the effects of fire in order to lessen the number of deaths and property damage caused by fire. This is done by determining the risks that are involved and providing the most effective method for implementing measures of prevention or protection. The paper showing experimental results of ordinary concrete columns made of  "NSC" subjected to axial load and cyclic firing is presented in this study. the bearing capacity of the column decreased. all samples have been loading an eccentric load with  "e = 75 mm" ,"e / h = 0.50," and the ratio Celsius (30%Pu) continuously through the burning period. The first column(C1) was the sample control with out exposure cyclic fire  , and the second column was subjected to four burning cycles over the course of four days, with a duration specific of "45 minutes" for each cycle, at a temperature of "400 °C", and the third column was subjected to four burning cycles over the course of four days, with a duration longer amount of "75 minutes" for each cycle, at a temperature of "400 °C, ", the four column was subjected to four burning cycles over the course of an  of four days, with a duration specific of "45 minutes" for each cycle, at a temperature of "600 °C " , the bearing capacity of the column decreased. that to be amount losses (C2,C3 and C4) comparison to (C1) equile ( 27.20 , 29.12, and 36.40)% respectively.  the fracture load of the experimental columns varied by decreasing with these variables. Additionally, the depth and spread of the cracks increased with the increase in burning duration and target temperature.

Properties of Sustainable Self- compacting Concrete Containing Treated and Modified Waste Plastic Fibers

Asmaa S. Hussien; Mahmoud K. Mohammed

Anbar Journal of Engineering Sciences, 2022, Volume 13, Issue 1, Pages 23-34
DOI: 10.37649/aengs.2022.175877

This study aims to improve different properties of sustainable self-compacting concrete SCC containing treated and modified polyethylene terephthalate PET fibers. For this purpose, gamma ray surface treatment and geometric modification were utilized for the used PET fibers. Concrete fresh properties include slump flow, T500mm, L-box and sieve segregation while mechanical properties include compressive, split tensile strength, flexural strength, static modulus of elasticity and impact strength. Further, physical properties and related durability properties comprise dry density, ultrasonic pulse velocity, porosity and water absorption. The results obtained demonstrated that the treatment and the modification used for the PET fibers slightly reduced the fresh properties of produced sustainable SCC (slump flow, T500 mm, L-Box and sieve segregation). However, they were within the limits of the SCC specification as reported in EFNERC guidelines. Further, concrete hardened properties in terms of compressive strength, splitting tensile strength, flexural strength, modulus of elasticity, impact strength, ultrasonic pulse velocity, decrease in the dry density, decrease in porosity and water absorption increased significantly.

Identifying key factors affecting of the projects objectives in Baghdad Province by using experts interview technique

Halah waleed abd Al-jaleel

Anbar Journal of Engineering Sciences, 2022, Volume 13, Issue 1, Pages 59-64
DOI: 10.37649/aengs.2022.175881

The performance of the construction industry is regarded as one of the most significant variables in the global economic development success of nations. As a result, it requires focusing on strengths to enhance them and weaknesses to address them. This study aims to identify the key factors affecting the objectives of construction projects. To achieve the study aim, previous records and documents of two completed projects were studied carefully to identify problems that occurred and the impact of these problems on the project objectives. After that, an experts' interview was conducted to identify the key factors affecting the purposes of the construction project. The results of this study identified (33) key factors affecting the achievement of the construction project objectives, where the factor "The financial allocation for the project" was the most important, while the factor "Bad a health and safety plan in the project" was the least important.

IHS Image Fusion Based on Gray Wolf Optimizer (GWO)

Sapan Jabar Faqe Ahmed; Dleen Mohammed Salih

Anbar Journal of Engineering Sciences, 2022, Volume 13, Issue 1, Pages 65-75
DOI: 10.37649/aengs.2022.175882

Satellites may provide data with various spectral and spatial resolutions. The spatial resolution of panchromatic (PAN) images is higher, but the spectral resolution of multispectral (MS) images is greater. There is Satellite sensors limitation for capturing an image with high spatial and spectral resolution, due to the hardware design of the sensors. Whereas many remote sensing, as well as GIS applications, need high spatial and spectral resolution. Image fusion merges images of different spectral and spatial resolutions based on a certain algorithm. It can be used to overcome the sensor's limitation and play an important role in the extraction of information. The standard image fusion approaches lose spatial information or distort spectral characteristics. Optimizations of fusion rules can overcome and degrade the distortions as the fusion core is the image fusion rules. In this paper, the Grey Wolf Optimizer (GWO) is used to find the optimal injection gain, as most distortions in image fusion are caused by the extraction and injection of spatial detail. Both qualitative and quantitative metrics were utilized to evaluate the quality of the merged image. The mentioned metrics that were used commonly for evaluation of image fusion results support the proposed algorithm for image fusion as the output image was qualitatively and quantitatively growth. In the future the proposed method can be updated by increasing the objective function dimensions to two or three for getting a best fused image.   

The Effect of CKD and RAP on the Mechanical Properties of Subgrade Soils

salman saeed; Ahmed H. Abdulkareem; Duraid M. Abd

Anbar Journal of Engineering Sciences, 2022, Volume 13, Issue 1, Pages 98-107
DOI: 10.37649/aengs.2022.175885

The construction of pavement layers on subgrade soil with good characteristics decreases the thickness of these layers, which in turn lowers the cost of building and maintaining roadways. However, it is impossible to avoid constructing pavements on unsuitable subgrade due to a number of limitations. Using conventional additives like lime and cement to improve subgrade properties results in additional costs. As a result, utilizing by-products (cement kiln dust and reclaimed asphalt pavement) in this field has benefits for the environment, economy, and technology. Large amounts of cement kiln dust (CKD), a by-product material, are produced in Portland cement factories. On the other hand, large amounts of reclaimed asphalt pavement (RAP) are accumulated as a result of the rehabilitation of old roads. This paper discusses using CKD and RAP to improve the characteristics of poor subgrade layers by conducting a series of Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests on samples of natural soil and soil stabilized with different percentages of CKD and RAP with different curing times to investigate their impacts on soil properties. The curing was carried out by wrapping the stabilized samples with several layers of nylon and then placing them in plastic bags at room temperature. The compaction results illustrated that the addition of CKD increases OMC and decreases MDD, in contrast to RAP, which decreases OMC and increases MDD. The addition of CKD and RAP led to a significant and unexpected increase in the CBR values. The results show that the soaked and unsoaked CBR values improve from 3.4% and 12.1% for natural soil to 220.1% and 211%, respectively, after adding 20% CKD and curing the samples for 28 days. Also, the addition of 25% RAP to soil-20% CKD blend increased the soaked and unsoaked CBR values to 251% and 215%, respectively. All the additions resulted in a significant reduction in swelling.

Strengthening Reinforced Beams Subjected to Pure Torsion by Near Surface Mounted Rebars

Mashael A. Alrawi; Mohammad N. Mahmood

Anbar Journal of Engineering Sciences, 2022, Volume 13, Issue 1, Pages 13-22
DOI: 10.37649/aengs.2022.175876

This paper investigates the possibility of strengthening Reinforced Concrete (RC) beams under pure torsion loadings. The torsional behaviour of strengthened RC beams with near-surface mounted steel and CFRP bars was investigated. The verification with the experimental work was performed to ensure the validity and accuracy which revealed a good agreement through the torque-rotation relationship, ultimate torque, and rotation, and crack pattern. This numerical study included testing of thirteen specimens (one of them was control beams while the remaining 12 were strengthened beams) with several parameters such as mounting spacing and configuration. The analytical results revealed that the addition of NSM rebar redistributed the internal stresses and enhanced the ultimate torsional strength, torque-rotation capacity, ductility, and energy absorption of the concrete beams.  Most of the strengthened beams revealed the appearance of the cracks at a phase less than the reference beam by an average of (9%).  Concerning the NSM strengthening, the CFRP bars provided a higher enhancement ratio when compared with the beams that strengthened with NSM steel rebar especially for the strengthening space equal to 130 mm and more. The ultimate torsional strength increased by (3.5%) and rotation decreased by (4%) approximately when the steel rebar was replaced by the carbon bar. The ductility and energy absorption of the analysed beams showed that the strengthening enhanced the ductility of the twisted beams. The ductility values varied according to the method of strengthening used, as it showed the highest values of the beam that was strengthened small spacing.

Rutting Performance of Asphalt Layers Mixtures with Inclusion RAP Materials

Abdalsattar M. Abdalhameed; Duraid M. Abd

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 2, Pages 203-210
DOI: 10.37649/aengs.2021.171188

sphalt is the most recycled materials around the world and the amount of RAP materials can be significantly increased with the application of good RAP management applications. In Iraq, the real inclusion of RAP materials in asphalt mixtures has not been applied yet in the field. It is therefore that there is a need to characterize the effect of inclusion RAP materials in asphalt mixtures with particular reference to permeant deformation/rutting resistance. The aim of this study is to evaluate the best layer of pavement structure; base, binder, and surface layers for inclusion (RAP) materials. In addition, highlight the best percentage that can be added from RAP to achieve positive results and better than that associated reference mixture in terms of rutting resistance. RAP materials collected from different sources Karbala and Fallujah, were adopted in this study at percentages of 20%, 30%, and 40% by weight of the asphalt mixture. Two scenarios of incorporating RAP materials have been adopted. The first is considered that RAP as a black rock in which the effect of aged binder surrounding the aggregate of RAP is neglected while, the letter is not considered RAP as black rock and the influence of aged binder in RAP materials has been taken into consideration. Dora bitumen has adopted in the current study which is used in common in Iraq. It has been highlighted the best layer in which RAP can be incorporated is the base layer, with a percentage up to 40% that RAP without considering RAP black rocks regardless the sources of RAP.

The Engineering dimensions and its impact on the sustainability on the roads network in Ramadi city

Rana Salah Thabit; Thaer Mahmoud; Hamid Awad

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 2, Pages 157-167
DOI: 10.37649/aengs.2023.176822

Transport is one of the most critical areas of urban life and an essential base for developing and developing
societies. It is a crucial indicator of the progress and development of cities and their great benefits. It saves from the
movement of people and goods and the prosperity of the economy-social, economic and environmental issues
globally and what we are witnessing in recent times. However, despite the tremendous advancement in technology,
it continues to face numerous challenges in developed and developing nations, including our own. The absorption
of the irrigated volume and any defect in the gradient causes many problems such as congestion, delays, traffic
jams and the accompanying psychological, economic, social and environmental effects, energy consumption,
depletion of natural resources and lifestyle. So transportation has become a concern. And it became a topic of
concern that imposes the need to think about the preparation and development of the transportation system towards
sustainability based on meeting transportation needs. In light of the negative impacts of the sustainable planning
engineering dimension on the urban road network in Ramadi and for the Iraqi cities, we have thus attempted to
study the effect of this project, given the critical impact on sustainable development and the approach used by
thinking people and scholars in their studies and documents in Agenda 2030. Through evaluating the data from the
research region, which comprised 27 Ramadi neighbourhoods, and applying them to the statistical analysis software
(SPSS), it discovers that the schematic engineering dimension indicator represented by the hierarchy has direct and
decisive connection significance. The local road area index achieved the most substantial linear relationship,
followed by the collective, secondary and major roads indicators. They reached a medium relationship to formulate
a sustainable development system based on Ramadi and other Iraqi cities. A decision is making about sustainable
urban engineering transportation. And take an approach with whatever is good for the state.

Evaluation of transportation network in AL- Fallujah city

Khalid Hardan Mhana

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 2, Pages 146-156
DOI: 10.37649/aengs.2021.171173

The city of Fallujah suffers from bad design in their network and it still dominated by the same pattern of the road and street network system that was produced by the previous stages of the development of the city, which is awaiting the necessary and appropriate solutions, which calls for planning to modernize the road network and streets in it that can accommodate the reality of the city’s condition and the proposed expansions for its subsequent urban growth. The transportation network in Fallujah city was chosen as a case study, the network was divided into roads and intersections, the evaluation included two main roads and eleven sectoral roads, eleven arterial roads, and twenty-five intersections. The network was evaluated in three stages, the first stage was traffic flow and service level, the second stage was evaluating the network in terms of road and intersections marking, while the third stage concerned with evaluating the network in terms of sustainability. The HCS 2010 program was applied to evaluate the first stage, while the second and third stages were evaluated based on the field survey. The results of the first stage showed that most parts of the network in the northern zone suffer from traffic problems and have a low level of service, while most parts of the network in the southern zone have a high service level and enjoy high traffic flow. Most parts of the network were suffered from bad marking, which causes many problems for the users of this network. Related to sustainability, we note a lack of interest on the part of designers or decision-makers. It was concluded that traffic solutions should be economically feasible for some parts of the network, which would lead to improving the network’s performance at the level of the three stages.

Effect of Polymer SBR on Strength Reduction in Concrete Immersed in Drainage and Ground Water

Ghassan Subhi Jameel; Ahmed Tareq Noaman; Bevian Ismail Al-Hadithi; Abdulkader Ismail Al-Hadithi

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 2, Pages 168-176
DOI: 10.37649/aengs.2021.171185

Concrete structures suffer from the impact of many harmful attacking materials that affect theproperties of the main material in them, which is concrete. These structures are also, exposedto the negative impact of many hostile environments such as soils containing harmful salts andharmful acids. A number of precautions should be considered in order to protect the concreteused in such structures. Adding polymer to concrete components as a percentages weight ofcement is one of the methods for producing polymer-modified concrete, which has lowpermeability, better mechanical properties and is more resistant to the negative effects ofharmful environmental factors. The utilization of polymers could help in protecting structuresand enhancing concrete strength. In this study, concrete mixes were prepared with inclusion ofstyrene butadiene rubber (SBR) polymer at four percentages (0%, 5%, 7% and 10% by cementweight). Co-polymers of butidine with styrene (styrene-butadine rubber (SBR)), are a group oflarge-volume synthetic rubbers. High adhesion occurs between the polymer films that formand cement hydrates. This action gives improves the properties of concrete such as flexuraland compressive strength and gives also a higher durability. The investigation was extended toevaluate the compressive strength of the SBR concrete mixes immersed in three types ofwaters: tap, drainage and ground water, at three different ages. The results showed that SBRpolymer enhanced the compressive strength of concrete significantly. A comparison betweenreduction in strength of concretes immersed in these three types of waters was also presented.Moreover, the presence of SBR polymer led to reduced loss in strength of concrete specimensimmersed in drainage and ground water. A proposed model to determine the compressivestrength of concrete specimens immersed in drainage and ground waters was deduced. Thismodel could be a helpful tool for rapid and easy estimation of the strength of concretespecimens immersed in drainage and ground water at different contents of SBR polymer. Theresults showed the highest improve in compressive strength to be associated with 7% SBRmixes at the three tested ages. The increases in this strength at days 7, 28 and 56 with inclusionof 7% SBR polymer were 112.8%, 113.9% and 116%, respectively, compared to OPC mix.

Torsional Capacity of Composite Reinforced Concrete Beams with Stirrup Connectors

Dolfocar Ali Usamah Witwit; Nabeel Abdulrazzaq Jasim

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 2, Pages 177-192
DOI: 10.37649/aengs.2021.171186

New composite reinforced concrete beams, in which reinforced concrete component is connected to steel T-section, are proposed. The shear connection between the two components, the reinforced concrete and the T-section, is provided by the stirrups that are required for the reinforced concrete component to resist the applied shear. Experimental tests in addition to numerical analysis were conducted to determine the behaviour and strength of such beams under pure torsion. Full scale one conventional reinforced concrete beam, T1, and two composite reinforced concrete ones, T2 and T3, were tested. The degree of shear connection between the two components of beams T2 and T3 was changed by varying the number of stirrups which are used as shear connectors. The experimental results revealed approximately same torsional stiffness for the three beams at the uncracked concrete stage. The torsional strength of the composite reinforced concrete beams was greater than that of ordinary reinforced concrete one by 11% and 27% for beams T2 and T3, respectively. Three-dimensional finite element analysis was conducted using program ABAQUS. To model the shear connection in composite reinforced concrete beam, the stirrups were connected to the web of the steel T-section by springs at the location of the stirrups. Good agreement is obtained between the results of the experimental tests and the finite element analysis. The ratios of experimental results to those of finite element analysis for torsional strength are approximately one. Under the pure torsion loading the degree of shear connection is found to have no effect on torsional capacity of beams.

Modal Split Model Using Multiple Linear Regression Analysis

Omaima A. Yousif; Adil N. Abed; Hamid A. Awad

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 2, Pages 222-228
DOI: 10.37649/aengs.2021.171190

Several modal split models have been created around the world to forecast which mode of transportation will be selected by the trip - maker from among a variety of available modes of transportation. This modeling is essential from a planning standpoint, as transportation systems typically receive significant investment. In this study, the main purpose was to develop a mode choice model using multiple linear regressions for Ramadi city in Iraq. The study area was divided into traffic analysis zones (TAZ) to facilitate data collection. The data was collected through a home interview of the trip makers in their home units through a questionnaire designed for this purpose. The result showed that the most influential factors on the mode choice for the general trips model using multiple linear regressions are car ownership, age, and trip cost. This model gave a good correlation coefficient of 0.829 meaning that the independent variables explain 82.9 of variance in the dependent variable (type of mode), which will help transport planners in developing policies and solutions for future

Torsional Behavior of Strengthened Reinforced Concrete Beams by CFRP Sheets: Parametric study

Mashael A. Alrawi; Mohammad N. Mahmood

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 2, Pages 229-244
DOI: 10.37649/aengs.2021.171191

This paper presents a nonlinear finite element analysis of reinforced concrete beams subjected to pure torsion. A verification procedure was performed on three specimens by finite element analysis using ANSYS software. The verification with the experimental work revealed a good agreement through the torque-rotation relationship, ultimate torque, rotation, and crack pattern. The studied parameters of strengthening by CFRP sheets included strengthening configurations and number of CFRP layers. The confinement configuration methods included full wrapping sheet around the beam, U-shaped sheet, ring strips spaced at either 65 or 130 mm, longitudinal strips at the top and bottom faces, U-shaped strips in addition to the number of layers variable. It was found that the performance of the beam for resisting a torsional force was improved by (33-49%) depending on the method of coating with CFRP sheets and the number of used layers. A change in the angle of twist, as well as the shape of the spread of cracks, was also noticed from the predicted results.

Comprehensive review study for the effect of utilizing waste materials on the thermal conductivity of concretes

Ahmed Abdullah Mohammed; Mohammed Akram Ahmed; H. K. Dawood

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 2, Pages 113-120
DOI: 10.37649/aengs.2021.171164

Since concrete is one of the most popularly utilized building mixtures in construction, a high demand of natural resources is significantly emerged. Therefore, a skyrocketed attention has been paid to create new opportunities for the use of recycle materials to develop a new construc-tion substance with more satisfactory properties. The use of waste products in concrete is not only economical, but it helps in solid waste management as well. Among various properties of concrete, thermal conductivity is a crucial factor that plays an important role in in building insu-lation by evaluating a material's capacity to transfer heat. This paper aims to review the potential application of waste materials in concrete as additive ingredients and investigate the effect of this waste material on thermal conductivity of concrete. The review of literature revealed that the application of most of the waste materials exhibited an obvious potential as thermal insulator. However, further investigated work is needed to highlight the advantages of utilizing waste mate-rials in concrete containing various type of waste materials

Progressive Collapse Analyses of Buildings Subjected to Earthquake Loads

Dr. Fareed H. Mosawi; Dr. Haider S. Al Jubair; Mr. Hussein A. Ahmed

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 1, Pages 10-19
DOI: 10.37649/aengs.2021.171194

Progressive collapse is a partial or total failure of a building that mostly occurs when the build-ing loses primary structural elements (typically columns) due to accidental or natural hazards. The failure of structures due to an earthquake is one of the most important and frequent types of progressive collapse. In this study, the finite element method is used to assess the response of multistory reinforced concrete buildings subjected to column loss during an earthquake. Three-dimensional nonlinear dynamic analyses are carried out using SAP2000 V.20 program. The ef-fects of different parameters on the progressive collapse behavior are investigated, namely: the location of the removed column within the ground floor; the method of column removal (sudden, in two-steps, and in four-steps) and the removal timing during the earthquake. It is demonstrated that the collapse occurs when all or most of the hinges at the bases of the ground floor columns reach their collapse level. The chosen column removal timing and policy affect the structural behavior considerably. It is realized that, the risk of building collapse increases when the removal timing harmonizes with the peak ground acceleration timing. Based on the adopted earthquake characteristics and building configurations, it is found that, the two steps removal scenario is the most dangerous one.Keywords:Progressive collapse, Concrete buildings, Seismic load, Nonlinear dynamic analysis, Plastic hinge.© 2014

Numerical Investigations of Bond-Slip Performance in Pull-Out High Strength Concrete Specimens Subjected to Elevated

Akram S. Mahmoud; Shamil K. Ahmed

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 1, Pages 20-28
DOI: 10.37649/aengs.2021.171195

The concrete members several blessings over steel beam, like high resistance to prominent tem-perature, higher resistance to fatigue and buckling, high resistance to thermal shock, fire re-sistance, robust resistance against, and explosion. However there are some disadvantages as a result of exploitation totally different materials to product it. The most downside of structural concrete member is its deprived the strength to tensile stresses.The bond mechanism between steel bars and concrete is thought to be influenced by multiple parameters, like the strength of the encompassing media, the prevalence of cacophonous cracks within the concrete and therefore the yield stress of the reinforcement. However, properties of concrete mass has significantly effect when it was subjected to elevated temperature.The objective of this paper presents the results that allocating with the bond behavior of the rein-forcement of steel bar systems below static pull-out loading tests subjected to elevated tempera-tures. This numerical technique relies on relative slip and therefore the stress of bond distribu-tions done the embedded length and size of the bar within the concrete cylinder specimens. The obtained results square measure given and commented with the elemental characteristics of ferroconcrete members. The comparison showed smart agreement with experimental results

Effect of Anchorage Length on the Shear Capacity of High Strength Concrete Deep Beams

Maytham Khalid Gatea a; Dr. David A.M.Jawad b

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 1, Pages 47-56
DOI: 10.37649/aengs.2021.171197

Ten simply supported deep beams with high strength concrete (C55 MPa) have been casted and subjected to a four-point loading test. Different parameters were examined for their influence on specimen behavior. These parameters were the shear span to overall depth ratio (a/h), the overall depth of deep beams (h), and additional anchorage length beyond the centerline of support (la). The experimental results show that the beam capacity decreases as the shear span to the overall depth ratio increases, and the overall depth and embedment length decrease. The major effect of anchorage length on the shear strength is studied. Different failure modes were observed which do not match strut-and-tie failure modes. The shear compression and anchorage failures were con-trolled in the high compressive concrete deep beams due to bottom steel yielding. Finally, the ex-perimental test results are compared with predictions of the strut-and-tie method according to the ACI 318-14 and a good agreement was found.

Simulation of Storm Sewer Network Using a Storm Water Man-agement Model (SWMM), Ramadi City as a Case Study

Ethar I. Mohammad; Ayad S. Mustafa; Ammar Adham

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 1, Pages 83-89
DOI: 10.37649/aengs.2021.171201

Ramadi city is suffering from severe flood problems during rainfall season as in many cities in developed countries. Storm Water Management Model (SWMM) was used to simulate storm sew-er network in the study area and depending on design rainfall intensity of 9.6 mm/hour. The rainfall intensity was proposed to increased by two to three times of the design intensity because of the absence of metrological stations in the study area to record rainfall intensity data of the rain storm. The intensity increasing by three times led to maximizing the flood risk by 43%. The proposed management to overcoming this problem is linking the collateral lines in Al-Andalus and Alhoz suburbs by additional pipes, this method reduces the percentage of flooding to 31%. Moreover, Economic Indicators (EI) were suggested to evaluate the cost of the network develop-ment. The area index ( ) which represents the total cost of the added pipes to the total area of the suburb, and the longitudinal index ( ), which represents the total cost of the added pipes to the length of the main pipe, the magnitudes of these indexes are 178 US dollar/hectare, and 57 US dollar/m respectively.

A proposed plan for implementing the public transport policy in the city of Ramadi / Anbar University as a model

S. Thameel; Th. Mahmood; A. Mustafa; A. Mohson

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 1, Pages 90-99
DOI: 10.37649/aengs.2021.171202

The development of cities in the infrastructure and urbanization and the increase in the population make people increase in the purchase of the private car, which in turn causes the congestion , pollution , accident and noise especially after 2003, as Iraq's import of cars increased to 5,800,000 cars distributed between the provinces, as 3Anbar province ranked ninth in the development number of cars with 174,000 cars according to the Central Bureau of Statistics of the Ministry of Planning. The university is the largest governmental institution that has the largest traffic volume of vehicles. We have three directions for entering the Anbar university they are east, middle and west directions. Total traffic volume from east, middle and west direction is 2165 vehicles which lead to traffic congestion in Ramadi city and Anbar university. The total traffic volume in private transportation in east, middle and west direction is 727,515 and 923 vehicles respectively. No of students in private transportation in east, middle and west direction is 4617, 3185 and3985 passengers respectively. As results of this research, there are three proposed parks one of them in the Sujaria at east direction, second park in Ramadi center at middle direction and third park in 5km area at west direction. In this paper, we make comparing between private and public transport in terms of fuel costs and time from the origin (the three proposed parks) to destination (Anbar University) assuming that private cars stopped in those three parks by using Park & Ride System and used buses with capacity of 40 passengers to transport students to the university. Depending on no. of passengers in private transportation from the three proposed parks to university we got the No. of buses from east park (Sujaria area), middle park (Ramadi center) and west park (7km area) to university which were 28, 20 and 25 bus respectively because each bus can transport four times.

Investigation of Clayey and Sandy Soil Characteristics Polluted with Crude Oil

N. Jajjawi; N. M. Salim; K.Y. Al-Soudany

Anbar Journal of Engineering Sciences, 2021, Volume 12, Issue 1, Pages 100-107
DOI: 10.37649/aengs.2021.171203

The focusing in this study was on the contaminated-uncontaminated soils' properties whichstudied by performing experimental tests included, Atterberg’s limit, specific gravity, compaction,unconfined compression, and direct shear tests. Different % of crude oil was used in thecontaminated soils which are performed by mixing the soils using different percent of were oilof 3 %, 6 % and 9 % by dry weight. The main effect of oil contamination causes a reduction in theliquid and plastic limit values for clayey soil. Besides oil contamination gives a reduction in themaximum dry unit weight as well as a decreasing the optimum water content with comparisonto original soil (clayey and sandy soil). The angle of internal friction is decreased for sand whileit increases for clay is one of oil contamination results.

Evaluation the effect of some traffic characteristics on the safety performance of intersections.

Mohammed H. Mhana; Khalid Hardan Alwani; Akram S. Mahmoud

Anbar Journal of Engineering Sciences, 2020, Volume 11, Issue 2, Pages 130-136
DOI: 10.37649/aengs.2023.176832

Traffic accidents and traffic delay have a negative impact on the mobility traffic flow due to their huge costs on the transport system. Thus one of the main primary aims for transport policy makers are reducing the negative effect of traffic accidents and traffic delay on the road network. In this study, fixed and random parameters Tobit models have been developed to model the accident rates from 20 intersections in Al-Karakh district in Baghdad City, Iraq. The safety significant of logarithm of annual average daily traffic, the percentage of heavy vehicles and the delay time for both major and minordirections for each intersection on the accident rates were evaluated. The main finding of this study shows that delay has an important effect on traffic accident rates of intersections. Regarding to the effect of other factors on traffic Accident rates, the result of the model shows that the logarithm of annual average daily flow, the percentage of heavy vehicles for both major and minor directions of the intersection are positively associated with more accident rates.

Shear Strength of Directly and Indirectly Loaded Rectangular Self - Compacted Reinforced Concrete Deep Beams Containing Recycled Concrete as Coarse Aggregate

Thamer Hussein Alhussein; Jamal Abdul Khudhair

Anbar Journal of Engineering Sciences, 2020, Volume 11, Issue 2, Pages 121-129
DOI: 10.37649/aengs.2023.176833

Deep beams with rectangular cross-sections are widely used in concrete structures. In the present study, reinforced concrete rectangular deep beams cast with self-compacted concrete (SCC) which contains recycled concrete as coarse aggregate (RCA) were tested under directly and indirectly loading conditions. In the experimental work, fifteen deep beams were investigated, the first parameter considered in this study was the shear span to effective depth (a/d) ratio. The other variable is the replacement ratio by which the normal coarse aggregate is replaced by RCA. The beams were cast without the use of shear reinforcement. During the tests, the response of the beams including the cracking load, the ultimate load, concrete strain, and mid-span deflection were recorded. Test results indicate that the presence of RCA caused a reduction in the values of cracking and ultimate loads. For instance, the cracking load was reduced by 9%, 23%, and 50% and the ultimate load was reduced by 2% , 23%, and 25% as RCA replacement increased by 25%, 50%, and 75% respectively for a/d ratio equals 1.0. Further, by increasing the a/d ratio, the ultimate load was decreased due to the lower contribution of arch action shear transfer in the beam with a higher (a/d) ratio. 

The use of multivariate statistical techniques in the assessment of river water quality

Ammar Salman Dawood; Maha Atta Faroon; Yasameen Tahseen Yousif

Anbar Journal of Engineering Sciences, 2020, Volume 11, Issue 2, Pages 102-112
DOI: 10.37649/aengs.2023.176835

This study assessed the temporal and spatial water quality variability to reveal the characteristics of the Shatt Al-Arab River, Basrah, Iraq. A total of 14 water quality parameters (water temperature (T), pH, electrical conductivity (EC), Alkanets (Alk), total dissolved solids (TDS), turbidity (Tur), total hardness (TH), calcium (Ca), magnesium (Mg), chloride (Cl), sulphate (SO4), total suspended solids (TSS), sodium (Na), and potassium (k)) were analyzed Use of multivariate statistical methods in a total of three stations for the period 2016-2017. In this study was use a statistical approach to determine the water quality using the Pearson Correlation Index (PCI), Principal component analysis (PCA), and Factor Analysis (FA) were used to analyze the data. Main water pollutant sources were wastewater from agricultural drainage and industrial wastewater. Significant relationships recorded between the investigated parameters based on the results of PCI, at the 0.01 and 0.05 significance levels. Per the FA results, 77.1 % of the total variance explained by two factors.

A Neural Model to Estimate Carrying Capacity of Rectangular Steel Tubular Columns Filled with Concrete

Kadhim Zuboon Nasser; Aqeel H. Chkheiwer; Mohammed F. Ojaimi

Anbar Journal of Engineering Sciences, 2020, Volume 11, Issue 2, Pages 192-201
DOI: 10.37649/aengs.2020.171222

The goal of the current investigation is to construct an artificial neural network (ANN) to estimate the ultimate capacity of the composite columns consisting of a rectangular steel tube filled with concrete (RSTFC) under concentric loads. The experimental results of (222) samples collected from previous researches were used in constructing the proposed network. Totally (45) specimens were randomly chosen for network testing while the remaining (177) speci-mens were used to train the network. The information used to create the ANN model is ar-ranged into (6) variables represents the different dimensions and properties of the RSTFC col-umns. Based on the input information, a formulated network was used to estimate the columns' ultimate capacity. Results obtained from the formulated network, available laboratory tests, and Eurocode 4 and AISC equations were compared. The network values were closer to the laboratory values than the calculated values according to the specifications of the mentioned codes. It has been shown that the formulated ANN model has a high ability to estimate the RCFST ultimate capacity under concentric loads

The Ɵptimum Decisions in Improving Sustainable Road Network Infrastructure by Using ,GIS , Graph Theory and L-matrix

M. S. al-Shuqairy; Noor A. Rajab

Anbar Journal of Engineering Sciences, 2020, Volume 11, Issue 1, Pages 43-52
DOI: 10.37649/aengs.2020.171286

Road network infrastructure is the key indicator of sustainable spatial development, as it affects the economy, environment, and society activities. These can be optimized through minimizing the time the vehicles take on the road, which in turn requires high connectivity and then high accessibility between the nodes of the road network. However, it is necessary to put a development strategy that helps the decision makers to produce relative high accessibility over the development time. In this paper, the vulnerabilities regarding the connectivity and spatial accessibility were pinpointed and analyzed, optimum priorities in sequent new linkages adding are made for developing a sustainable infrastructure with faster enhancement for the spatial accessibility. The results have become a tough guidance for decision makers, and can be adopted as a first step for legislating a strategy for sustainable transportation system