Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for Ibrahim A. S. Al-Jumaily

Article
Some Mechanical Properties of Reactive PowderLight Weight Concrete

Ibrahim A. S. Al-Jumaily

Pages: 47-61

PDF Full Text
Abstract

In General, original reactive powder concrete (RPC) consists of a superplasticized cement mixture with silica fumes, steel fiber and ground fine sand (150-600 ىm). The main purpose of the present work is to produce and study some mechanical properties of lightweight reactive powder concrete using a superplasticized cement mixture with high reactivity metakaolin (HRM) instead of silica fume, steel fiber (with different ratios ) with ground fine sand (150-600 ىm) and light weight material called (Perlite ) also with different ratios .This investigation was carried out using several tests, these tests were compressive strength, modulus of rupture, modulus of elasticity, density and absorption, and performed for specimens at ages of 3, 7, 28 days, respectively. The tests results were compared with a reference mix. The experimental results shows that , with different ages, (for constant Perlit ratio for 0% to 10% as additional cementtitious materials) addition of 1% steel fiber will improve about (8.3%-10% , 3.2%-11%and 0.25%- 8%) for compressive strength , modulus of rupture, and modulus of elasticity respectively, and increase density, absorption about (0.8%-1.8%,4.5%-8.2%) respectively. Also an increase of steel fiber ratio to 2% will improve about (16.5%-20.3%, 9.0%-17%, and 1.7%-11.5%) for compressive strength , modulus of rupture and modulus of elasticity respectively, and increase density, absorption about (1.7%-2.3% , 7.3%-8.3%) respectively. For same steel fiber ratio about 0% to 2%, increasing Perlite ratio to 2.5% will decrease about (17.3%-18.8%, 9.5%-15.5%, 4.4%-16.6%, and 4.98% - 6.9%) for compressive strength, modulus of rupture, modulus of elasticity and density respectively and increase absorption to about (55.5% - 66.5%). Increasing the ratio to 5% will also make a decrease of about (36%-36.77%, 33.7%-37%, 16.5%- 21.88%and 15.91%-19.74%) for compressive strength, modulus of rupture, modulus of elasticity and density respectively and increase absorption for about (106%- 110.5%) . Increasing the ratio to 10% will also decrease about (45.98%-47.2%, 46.5-54.2%, 30.6%- 35.57%and 19.4%-23.36%) for compressive strength, modulus of rupture, modulus of elasticity and density respectively and increase absorption about(183%- 192.6%). To produce structural lightweight concrete, the tests results show that the optimum steel fiber is 1% by volume and optimum Perlite ratio is 2.5% by weight of cement as additional materials.

1 - 1 of 1 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.