Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for J. Jamal

Article
Use of waste stone powder to improve performance of problematic soils - A Review.

Jaylan Sherwany, Jamal Kakrasul

Pages: 27-39

PDF Full Text
Abstract

Problematic soils, especially clayey soil, are problematic for engineering projects in their natural state because of clay's swell-shrinkage phenomenon. Numerous methods and stabilizer materials have been used to enhance clay's geotechnical properties and make them appropriate for construction. One of the significant methods of stabilization of problematic soil is using waste materials like waste glass, waste stone, waste plastic, etc. Due to the waste stone's consistency reducing water content and increasing the soil's strength, it has been employed in many civil engineering studies. Waste stone is available in various forms, including waste stone powder (WSP). WSP is produced by blasting tunnels or cutting huge stone blocks. Hence, the main aim of this study is to review the influence of WSP on improving the geotechnical properties of problematic soils treated with WSP, for this purpose, the treated problematic soils with various percentages of WSP are compared with natural soils. This study evaluates physical properties (i.e., Index properties, linear shrinkage/swelling, optimum moisture content, and maximum dry density) and mechanical properties (i.e., unconfined compressive strength and California bearing ratio). Also, the effect of WSP on decreasing the thickness of pavement layers was reviewed

Article
Manufacturing of Electro-hydraulic Elevator System Controlled by PLC

Farag Mahel Mohammed, Jamal A. Mohammed, Hussain S. Mohammed

Pages: 162-169

PDF Full Text
Abstract

Hydraulic actuators are one of the most viable choices due to their high power-to-weight ratio,low cost, robustness, fast response and great power supply. The present work focuses onbuilding an elevator prototype model simulates real hydraulic elevator. This model consists ofhydraulic parts (double-acting hydraulic cylinders, pump, valves, pipeline and filter) andelectronic parts (PLC, push-bottoms, relays and encoder). It is built with three floors in about300 cm height (total with the cylinder) to elevate a 30 kg payload and controlled by a PLCcontroller of (DELTA DVP-ES32) with 16 inputs and 16 outputs. The PLC receives input signals asorders from the operator as well as sensors and encoders. The PLC is programmed with WPSOFT2.46 Ladder diagram software to basically calling the elevator cabin through three locations andenabling its arrival at the desired floor. The cabin descent is achieved by using a proportionalcontrol valve which is controlled by the PLC. The cabin door is automatically opened and closedby DC motors. It is observed that, the application of this partnership between the PLC and theproportional valve in the build model helped to achieve excellent results in terms of systemcontrol and its efficiency, response, and smoothness.

Article
Shear Strength of Directly and Indirectly Loaded Rectangular Self - Compacted Reinforced Concrete Deep Beams Containing Recycled Concrete as Coarse Aggregate

Thamer Alhussein, Jamal Khudhair

Pages: 121-129

PDF Full Text
Abstract

Deep beams with rectangular cross-sections are widely used in concrete structures. In the present study, reinforced concrete rectangular deep beams cast with self-compacted concrete (SCC) which contains recycled concrete as coarse aggregate (RCA) were tested under directly and indirectly loading conditions. In the experimental work, fifteen deep beams were investigated, the first parameter considered in this study was the shear span to effective depth (a/d) ratio. The other variable is the replacement ratio by which the normal coarse aggregate is replaced by RCA. The beams were cast without the use of shear reinforcement. During the tests, the response of the beams including the cracking load, the ultimate load, concrete strain, and mid-span deflection were recorded. Test results indicate that the presence of RCA caused a reduction in the values of cracking and ultimate loads. For instance, the cracking load was reduced by 9%, 23%, and 50% and the ultimate load was reduced by 2% , 23%, and 25% as RCA replacement increased by 25%, 50%, and 75% respectively for a/d ratio equals 1.0. Further, by increasing the a/d ratio, the ultimate load was decreased due to the lower contribution of arch action shear transfer in the beam with a higher (a/d) ratio. 

Article
Mechanical Properties of Welded Martensitic Stainless Steel (AISI420) Subject to Different Heat Treatment

J. Jamal, H. Ali, S. Hareer

Pages: 12-18

PDF Full Text
Abstract

The aim of this article is to investigate the properties for joints of welded martensitic stainless steel (MSS) by ER 309 L filler wire, using tungsten arc welding (Tig). The regions of the base and welded materials were investigated by means of SEM, EDS, OP and HV were conducted to calculate the properties of the welded specimens. The influence of heat and cryogenic treatments also investigated, The best results from microstructure side occurrence epitaxial grains growth which was observed along the interface of weld-metal region, the maximum hardness was (414 HV) in conventional heat treated samples that tempered at 200°C, precipitation of small carbides were observed that this is responsible for the improvement in the mechanical properties of the material. Hardness at the HAZ region in state of DCT in all weldments was reduced as compared to hardness of HAZ region of CHT. The microhardness was at the highest value in the fusion zone

Article
Compression and Wear Properties of Biocompatible Commercially Pure Titanium and (Titanium-Silicon) Alloys

Emad S. Al-Hassania, Jamal J. Dawood, Balsam M. Al-Sabe’a

Pages: 54-60

PDF Full Text
Abstract

The porous Titanium is characterized by high permeability which can assure the ingrowth of bone tissues, and consequently results in a good bonding between the metallic implant and the bone. In this work, Silicon element was added to the Commercially Pure Titanium at different weight percent of (2, 4, 6, 8 and 10) to investigate its effect on the porosity percentage, mechanical properties of the resulted samples. XRD analysis stated that at (Si) content lower than (2 wt%) the alloy is single phase (α- Ti alloy), as the Silicon content increased, in addition to (αphase), (Ti5Si3) intermetallic compound developed in the alloy. Porosity measurement results showed that the porosity percentage increases with the increase in Silicon content. Wear results stated that the wear rate increases with the increase in silicon content due to the increase in porosity percentage while the hardness results stated that there is no significant effect for Ti5Si3 intermetallic compound on improving the hardness of the samples. This is attributed to its low percent and the major effect of porosity on hardness which declined the effect of Ti5Si3 by reducing the hardness of the alloy compared with the master sample. The obtained results of the (yield strength, ultimate compressive strength and Young’s modulus) were within the values that match bone’s properties. This means these materials are suitable for biomedical application

1 - 5 of 5 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.