This research work includes production of polymer modified polystyrene concrete and studies the mechanical properties. Several proportions of raw materials were used to produce this type of concrete. This study is intended to improve the mechanical properties of light weight polystyrene concrete using styrene butadiene rubber(SBR) with rate of (5,10,15and20)% of cement weight. Compressive strength, flexural strength, impact strength and dry density tests were made on more than 150 specimen at age of 28 days. The results show that the addition of (SBR) with range of (5-20)%of cement weight is improve the flexural strength with range (3.74-18)%, and improve the impact strength with range (39-163)%. Also the results show that it is possible to produce polystyrene concrete with density (1680,1433 and 1147) kg/m3 replacing light weight Polystyrene aggregate with volume fraction (30,50 and70)%of sand.
This research work includes study of sound insulation property of concrete samples with different densities. This study intended to present a proposed empirical formula to determine the sound insulation of concrete walls using the ultrasonic instrument. Experimental tests on concrete samples were made using the ultrasonic instrument, the sound insulation of concrete walls calculated according to a proposed empirical formula made in this work. This formula takes into consideration pulse velocity, wall width, and frequency .This formula is supported on a statistical criteria. The results are evaluated and compared with the values that computed using the most well-known formula, the comparison show compatibility of the results with tolerance of (3%).
This investigation provides experimental results and nonlinear analysis by using finite element model of thick hollow core slab made from recycled lightweight material. Four hollow core slabs specimens were cast and tested in this investigation with dimensions (1200mm length, 450mm width and 250mm thickness). The crushed clay brick was used as a coarse aggregate instead of gravel. The iron powder waste and silica fume were used in order to increase the compressive strength of concrete. The techniques reduction hollow length and use shear reinforcement were used to improve shear strength and avoid shear failure. The specimens were tested by applying two-line load up to failure. The experimental results were showed these techniques were resisted the shear failure significantly and works to change failure mode from shear to flexural failure. Finite element computer software program (ANSYS) was used to analysis hollow core slabs specimens and compare the experimental results with the theoretical results. Good agreement have been obtained between experimental and numerical results.