The antenna is a Modified Broadband Butterfly Antenna (MBBA). The technical parameters of such systems are heavily influenced by the qualities of the antenna feed devices. The aperture theory of antennas uses the representation of the radiation field of the antenna as a superposition of the fields of elementary sources, characterized by their type and amplitude-phase spatial distribution. The radiation field of an antenna of finite dimensions is a superposition of inhomogeneous spherical waves emitted by the antenna elements. This paper is primarily the study process, Radiation models were calculated using the model of the cavity plates, Simple Green model, and the strict commercial Electromagnetic Simulator. The modified active rectangular patches with the Gann diode were combined into arrays of E and H plane. Calculated and measured results for these two active arrays the beam scanning, the possibilities have been demonstrated for both arrays. The results of an electrodynamics numerical simulation were obtained. Broadband and multiband radio systems have already found widespread practical applications by utilizing basic antenna parameters and characteristics.
CAPTCHA, which stands for Completely Automated Public Turing Test to Tell Computers and Humans Apart, is a commonly employed security measure to distinguish between humans and computers. The Turing Test, designed to guarantee network security, is the foundation of this security technique. Usability is a crucial concern that can prevent human users from engaging in laborious and time-consuming tasks. When designing CAPTCHA, security and usability must be addressed simultaneously. When designing CAPTCHA, it is crucial to address security and usability simultaneously. A concerted effort is required to protect online data and guarantee privacy and security. The personal information of Internet users remains susceptible to theft. This study uses an information extraction technique called CAPTCHA to investigate the hazards associated with violating user privacy. It is a highly harmful process due to hacking, theft, unauthorized reuse, and the breach of user information. This study proposes a privacy preservation system employing concurrent encryption techniques, multilateral security computing, and zero-knowledge proof. The objective is to create a system that allows for uncomplicated and secure puzzle-solving using dice gas. CAPTCHA limits access to users' information. In the overview and application of evidentiary measurable methods, we can draw significant conclusions about the more extensive client group's discernments and encounters with CAPTCHA as a privacy-preserving component.