Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for aspect-ratio

Article
Structural Behavior of Normal and High Strength Concrete Wall Panels Subjected to Axial Eccentric Uniformly Distributed Loading

Jasim M. AL-Khafaji

Pages: 152-170

PDF Full Text
Abstract

In most cases, the concrete wall panels are subjected to axial eccentric distributed loading; due to this type of loading, concrete wall panels behave and fail somehow. There are many parameters that affect the structural behavior of the concrete wall panels. This study presents experimental investigation the structural behavior of concrete wall panels subjected to axial eccentric distributed loading; also evaluates the effect of the parameters, slenderness ratio (H/t), aspect ratio (H/L) and concrete strength on the behavior of concrete wall panels. The experimental program includes testing fifteen concrete wall panels hinged at top and bottom with free sides, by applying the load axially with eccentricity equal to (t/6); these panels are divided into five groups, each group consists of three panels with slenderness ratio (H/t) equals to (20 , 25 , 30) for each panel, three groups of normal concrete strength with aspect ratio (H/L) equal to (1.0 , 1.5 . 2.0) for each group and the other two groups are of high strength concrete with aspect ratio (H/L) equal to 2.0 for both two groups. The deflections of concrete wall panels depend on the slenderness ratio (H/t), aspect ratio (H/L) and concrete strength. The failure mode of the concrete wall panels is greatly affected by the aspect ratio (H/L); the panels with low aspect ratio tend to fail by crushing, while panels with high aspect ratio tends to fail by buckling.

Article
Numerical Investigation of Hydrothermal Performance of Pinned Plate-Fin Microchannel Heat Sink

Hamdi E. Ahmed, Obaid T. Fadhil, Wesam M. Salah

Pages: 210-232

PDF Full Text
Abstract

Enhancing the hydrothermal performance of plate-fin microchannels heat sink (PFMCHS) promises smaller size and lighter weight, and then improve the heat removal in consequently increase the speed of electronic devices. In this numerical study, an innovative hydrothermal design of PFMCHS is suggested by inserting elliptic pins inside microchannels in different; aspect ratio (AR) of pin, pin number ratio (ψ) in order to optimize the hydrothermal design of this kind of heat sinks. The main objectives of this study are; investigating the effect of pins on the performance of PFMCHS by investigating the best geometry in the pinned-fin MCHS and which is higher, thermal or hydraulic performance of this kind of heat sinks and what is the optimal number of pins numerically and what about the pressure drop penalty in the proposed design, little, modest or high increase. It is seen that the thermal resistance of the pinned fin MCHS is about 50% lower, and pressure drop of it is much higher than that of the (PFMCHS) under the condition of equal wind velocity. Maximum mechanical fan power reduction obtained is about 57% for the pinned fin MCHS with ψ = 1 and Dh = 1 ×10‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌-3 m compared to the corresponding original channel heat sink. To show the overall performance of the two parameters; aspect ratio (AR), pin number ratio (ψ), the overall JF factor is estimated and the concrete findings shows that the best hydrothermal performance is obtained at the greater aspect ratio which is around overall JF = 1.2. In addition, the trend of overall JF is going down with the pin number ratio, starting from 1.2 to 1.15. And the concrete findings show that pinned fin MCHS provides thermal performance of 1.42 times greater than the smooth one under the corresponding conditions when one pin is used in each channel

Article
Effect of Cutouts on the Behavior of Clamped Rectangular Plates

Arz Yahya Rzayyig

Pages: 45-59

PDF Full Text
Abstract

Plates with interior openings are often used in both modern and classical aerospace, mechanical and civil engineering. The understanding of the effects of two cutouts on the stress concentration factor, maximum stress and deflections in perforated clamped rectangular plates, were considered. Parameters such as location, size of cutout and the aspect ratio of plates are very important in designing of structures. These factors were presently studied and solved by finite element method (ANSYS) program. The results based on numerical solution were compared with the results obtained from different analytical solution methods. One of the main objectives of this study is to demonstrate the accuracy of the analytical solution for clamped square plate. In general, the results of the square clamped plates with two cutouts come out in good agreement. The results presented here indicated that the maximum stress, deflection of perforated plates can be significantly changed by using proper cutouts locations and/or size. The results show that the rectangular plate containing two cutouts arranged along the width is stronger and stiffer than when arranged along the length at a given spacing, and the square plate is always stronger and stiffer than an equivalent rectangular plate for the same loading condition.

Article
Natural Convection Heat Transfer in Horizontal Concentric Annulus between Outer Cylinder and Inner Flat Tube

Ahmed Ali Najeeb, Amer Jameel Shareef, Waleed Mohammed Abed

Pages: 31-45

PDF Full Text
Abstract

Natural convection heat transfer in two-dimensional region formed by constant heat flux horizontal flat tube concentrically located in cooled horizontal cylinder studied numerically. The model solved using the FLUENT CFD package. The numerical simulations covered a range of hydraulic radius ratio (5, 7.5, and 10) at orientation angles from (0o up to 90o). The results showed that the average Nusselt number increases with hydraulic radius ratio, orientation angles and Rayleigh number. As well as enhancement ratio for Nusselt number at orientation angle 90o and hydraulic radius ratio 7.5 equal 24.87%. Both the fluid flow and heat transfer characteristics for different cases are illustrated velocity vectors and temperature contours that obtained from the CFD code. The results for the average Nusselt numbers are compared with previous works and show good agreement.

Article
Study of Some Durability Properties of Self-compacting Concrete Containing Waste Polyethylene Terephthalate

Marwah Majid, Mahmoud Mohammed

Pages: 15-30

PDF Full Text
Abstract

This study aims to investigate the durability properties and microstructural changes of self-compacting concrete (SCC) incorporating waste polyethylene terephthalate (PET) as fibers and as fine aggregate replacement. This is after exposed to saline environment (Alkalies, Sulphates, and Chlorides). PET effect into two forms was also evaluated for routine rheological properties of SCC and mechanical strength before and after exposure to sulphate salt. Five proportions of each form of PET incorporation in SCC mixtures were utilized. The volume fractions considered for PET as fibers were (0.25, 0.5, 0.75, 1.0, and 1.25)% by volume, with aspect ratio of 28%, and (2, 4, 6, 8, and 10)% by volume for fine aggregate replacements. Results indicated that the inclusion of PET adversely affected fresh propertis especially high proportions of PET as fine aggregate. Alkali silica reaction (ASR) outcomes illustrated an enhancement in the mix containing PET fibers, while fine-PET mix was slightly enhanced. Magnesium sulphate reduced mass and compressive strength of all mixes in percentages ranging from (0.18-0.90) % for mass loss and from (0.47-55.13) % for compressive strength loss. Ultrasonic pulse velocity (UPV) and dynamic modulus of elasticity (Ed) increased due to the sulphate impact except for M0.5 and M10 which decreased in both tests. Chloride's theoretical and modelled results illustrated higher diffusion coefficients and lower surface chloride content of fiber-PET mixes as compared to fine-PET mixes. The predicted SCC cover depths for fiber-PET mixes were lower than those predicted for fine-PET mixes for 20 and 50 years of service life design.

1 - 5 of 5 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.