Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for bernoulli-beam

Article
Analytical Solution of Tapered Bimodular Beams

Dhafer Kh. Jadan

Pages: 79-101

PDF Full Text
Abstract

In this paper, an analytical solution of a tapered bimodular beam has been developed. An Euler-Bernoulli beam theory with shear deformations has been utilized to obtain the solution. The bimodular beams are different from those unimodular beams in having two different moduli of elasticity one in compression and another in tension. A verification for the solution has been performed using FEM analysis with ANSYS. The results of the program were very close the results of the analytical solution presented in this paper.

Article
Linearised Dynamic Analysis of Bimodular Beams

Nahidh H. Kurdi

Pages: 217-238

PDF Full Text
Abstract

Linearised dynamic analysis of beams subjected to lateral forces and composed of materials which have different moduli in tension and compression is presented. The position of the neutral surface was rendered independent of the spatial and temporal coordinates by introducing a special assumption which reduced the coupled nonlinear problem of the flexure of such a beam into a linear one. The actual position then became a function of section geometry and the two elastic moduli and was determined by the equivalent section method. The elemental dynamic stiffness matrix was derived using the exact displacement shape functions governed by the governing partial differential equation and the structural stiffness matrix was assembled according to the usual assembling methodology of structural analysis. Symbolic and numerical examples were solved to show the applicability and efficacy of the proposed method.

1 - 2 of 2 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.