Is the refrigerant of the important factors affecting the cutting process as the use of fluids and in different proportions with water used in the cutting process has a clear influence on both the roughness of the surface of the metal to be used and the age of many because of that importance was the use of neural networks to predict the impact of the proportion of mixtures of different and find the best rate of mixing terms of access to the best surface roughness and longer life for many
Turning is the most popular machining operation. The quality of the product may be determined using a variety of metrics, such as the surface generation method and the surface roughness of the product. This work uses cutting variables to obtain the best surface quality through a mathematical model. The suggested surface generation in this work results from deriving it using the Bezier technique, with degree (5th) having six chosen control points. One of the critical indicators of the quality of machined components is the surface roughness created during the machining process. Surface roughness improvement via machining process parameter optimization has been extensively researched. The Taguchi Method and actual tests were employed for evaluating the surface quality of complicated forms; regression models with three different variables for the cutting process, such as cutting speed, depth of cut, and feed rate, were also used. According to the experimental findings, the most significant effect of feed rate on the surface roughness is approximately (40.9%), and the more minor effect of depth of cut on the surface roughness is almost (16.23%). In addition, the average percentage error is 4.93%, the maximum error is 0.14 mm, and the minimum error is -0.143 mm for the prediction using the regression equation.
The Cross-Rolling (CR) process is a severe plastic deformation technique that was used to roll aluminum alloy 6061. However, this process is accompanied by many disadvantages, such as spring back due to elastic recovery. This research aims to investigate the effect of cross-rolling on the spring back phenomenon by examining the main parameters that affect the forming process. Two different routes of cross-rolling were used: the first route, called two-step cross-rolling (TSCR), and the second, multi-step cross-rolling (MSCR), were employed to achieve high deformation and superior mechanical properties. The samples were bent using the V-bending process at three different speeds (5, 10, and 15 mm/min). The results showed that the rolling route and the change in cutting direction led to increased plastic deformation, thus increasing the spring-back factor. The type of route and cutting direction significantly impacted both the maximum load and the springback results.
This research presents a mathematical model of feed-interval scallop height, where in a machined surface there are two types of scallop height, the pick(path)-interval scallop and the feed-interval scallop. The pick-interval scallop is generated by the finite pick offset between the successive cutting paths, while the feed-interval scallop is generated by the finite increment between the successive tooth feeds. New model that describes and predicts the geometric generating mechanisms of the feed-interval scallop height have been derived using torus cutter which is commonly used in multi-axis milling machine. The machining parameters (effective tool cutter radius, feed per tooth and the magnitude of tool axis inclination angles) have been considered in theoretical and experimental work to study the effect of these parameters on this type of scallop height. From theoretical and experimental work it was found that at high-speed machining, the feed-interval scallop is more important to the surface roughness than the path-interval scallop, and the feed-interval scallop is very sensitive to the tool-axis inclination angle. The feed-interval scallop height decreased sharply and quickly within a few degrees of the tool-axis inclination to the normal workpiece surface. In general, an inclination angle equal to is good enough for all tool diameters used in the present work, namely (6,8,10 12 mm).
Problematic soils, especially clayey soil, are problematic for engineering projects in their natural state because of clay's swell-shrinkage phenomenon. Numerous methods and stabilizer materials have been used to enhance clay's geotechnical properties and make them appropriate for construction. One of the significant methods of stabilization of problematic soil is using waste materials like waste glass, waste stone, waste plastic, etc. Due to the waste stone's consistency reducing water content and increasing the soil's strength, it has been employed in many civil engineering studies. Waste stone is available in various forms, including waste stone powder (WSP). WSP is produced by blasting tunnels or cutting huge stone blocks. Hence, the main aim of this study is to review the influence of WSP on improving the geotechnical properties of problematic soils treated with WSP, for this purpose, the treated problematic soils with various percentages of WSP are compared with natural soils. This study evaluates physical properties (i.e., Index properties, linear shrinkage/swelling, optimum moisture content, and maximum dry density) and mechanical properties (i.e., unconfined compressive strength and California bearing ratio). Also, the effect of WSP on decreasing the thickness of pavement layers was reviewed
Turbo codes have been deployed in many cutting-edge technologies because they can achieve very high coding gains. Turbo decoders deploy at least two Soft-Input-Soft-Out (SISO) decoders, which operate iteratively to incorporate their results to conclude the output. The soft outputs from the used constituent SISO decoders develop gradually along the iterations. This development is studied and analyzed in this work to understand the dynamics leading to the results. Histograms statistically group and visualize the soft results for further analysis and study. A method is proposed to evaluate the decoding performance based on the density of the values of the soft outputs within the histogram. Results show that the performance is inversely related to the ratio of the values of the soft outputs within the near-zero bins within the histogram. The proposed method can be deployed at the decoder to provide an early indication of the reception and whether it has the potential to be correctly decoded or not. This early decision can save the decoding resources.
The most common type of abrasive water jet is known as a valuable and advanced non-traditional machining operation due to its no heat-affected zone, best in removing material, very environmentally friendly, and no mechanical stresses. This paper gives an idea about Abrasive water jets in terms of applications, advantages, and limitations. Also illustrates the influence of the parameters on the material removal rate. The effect of feed rate, pressure, and stand-off distance were worked, at three levels for material removal rate (MRR) to machining Aluminium alloy type-5083 by using a tool consisting of a mixture of 70% water and 30% abrasives of red garnet. The distance of the standoff has the most significant impact on the rate of material removal, which is subsequently followed by the feed rate and finally the pressure. The findings demonstrated that the Taguchi model is capable of making accurate predictions regarding the machining reactions, with a rate of material removal of 93.3%.
The present research aimed to study the effect of distilled water on impact strength for unsaturated polyester composites reinforced with E-glass fibers with volume fraction 35%, all samples were prepared by using hand lay up technique. Unsaturated polyester resin was used as matrix for the reinforced materials that consist of artificial glass fibers (woven roving) with directional (0,90) and chopped glass fibers with the random direction. The samples were cutting with measurement (60 x 6) mm and the sample thickness dependent on the number of layers of glass fibers. The impact tests are carried out on samples under the influence of normal conditions (laboratory temperature). The results and examinations for these samples shows acceptable improvement in impact strengths of the matrix was observed after addition of glass fibers, to explain the effect of water on impact properties, the samples immersion in water for (50) days. The results show that as the exposure time increased the impact strength of samples increase.