Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for drainage

Article
Effect of Polymer SBR on Strength Reduction in Concrete Immersed in Drainage and Ground Water

Ghassan Subhi Jameel, Ahmed Tareq Noaman, Bevian Ismail Al-Hadithi, Abdulkader Ismail Al-Hadithi

Pages: 168-176

PDF Full Text
Abstract

Concrete structures suffer from the impact of many harmful attacking materials that affect theproperties of the main material in them, which is concrete. These structures are also, exposedto the negative impact of many hostile environments such as soils containing harmful salts andharmful acids. A number of precautions should be considered in order to protect the concreteused in such structures. Adding polymer to concrete components as a percentages weight ofcement is one of the methods for producing polymer-modified concrete, which has lowpermeability, better mechanical properties and is more resistant to the negative effects ofharmful environmental factors. The utilization of polymers could help in protecting structuresand enhancing concrete strength. In this study, concrete mixes were prepared with inclusion ofstyrene butadiene rubber (SBR) polymer at four percentages (0%, 5%, 7% and 10% by cementweight). Co-polymers of butidine with styrene (styrene-butadine rubber (SBR)), are a group oflarge-volume synthetic rubbers. High adhesion occurs between the polymer films that formand cement hydrates. This action gives improves the properties of concrete such as flexuraland compressive strength and gives also a higher durability. The investigation was extended toevaluate the compressive strength of the SBR concrete mixes immersed in three types ofwaters: tap, drainage and ground water, at three different ages. The results showed that SBRpolymer enhanced the compressive strength of concrete significantly. A comparison betweenreduction in strength of concretes immersed in these three types of waters was also presented.Moreover, the presence of SBR polymer led to reduced loss in strength of concrete specimensimmersed in drainage and ground water. A proposed model to determine the compressivestrength of concrete specimens immersed in drainage and ground waters was deduced. Thismodel could be a helpful tool for rapid and easy estimation of the strength of concretespecimens immersed in drainage and ground water at different contents of SBR polymer. Theresults showed the highest improve in compressive strength to be associated with 7% SBRmixes at the three tested ages. The increases in this strength at days 7, 28 and 56 with inclusionof 7% SBR polymer were 112.8%, 113.9% and 116%, respectively, compared to OPC mix.

Article
Static analysis of two-directional functionally graded cylindrical panels under the effect of symmetric loads using finite element method (FEM)

Qutaibah M. Mohammed, Hamad M. Hasan

Pages: 408-424

PDF Full Text
Abstract

This paper offers the linear analysis of the static behavior of two directional functionally graded(2D-FG) cylindrical panels under the effect of internal symmetric loads. The mechanicalproperties of the cylindrical panel are given to be changed simultaneously through the thicknessand longitudinal directions as a function to the volume fraction of the constituents by a simplepower-law distribution. Based on Sander’s first order shear deformation shell theory (FSDT), theequations of motion for (2D-FG) panels are derived using the principle of minimum totalpotential energy (MPE). The finite element method (FEM) as an effective numerical tool isutilized to solve the equations of motion. The model has been compared with those available inthe literature and it observed good correspondence. The influences of the material variationalong the thickness and longitudinal directions, geometrical parameters, boundary conditionsand load parameters on the panel deformation are studied in detail.

Article
Delineation of Prospecting Zones of Groundwater Using Remote Sensing and Geographic Information System (GIS): A case Study of Solani River Basin

Mufid alhadithi

Pages: 7-13

PDF Full Text
Abstract

Initial delineation of prospecting zones of groundwater was conducted in the present studyusing remote sensing and geographic information system (GIS) techniques. It has been preparingan integrated geographic database of spatial and non-spatial data for the study area. The spatialdata were generated by using image processing software (Erdas 8.3) and GIS software (Arc view3.3) enhanced by real frequent field visits of the study area. These data include: surface featureswhich give a direct and indirect indicators of the existence of groundwater and affect to thegroundwater movement such as hydrogeomorphological, drainage density, slope, landuse andsoil maps. The non spatial data were derived primarily from real views during field visits to thestudy area and from the existing writing or previous studies. All the data generated were saved inthe GIS databank for the purpose of digitization, computational and generate the best possibleoutput results to determine the extent of possible areas where the water that exists for the purposeof prospecting. Results showed that more areas could be have very good categories of prospectzones are the southern parts of the study area, which covers about 375 Km2 while the northernareas, which covers about 164 Km2 of the study area are grouped as runoff zone. Accordingly thepossibilities of the presence of groundwater are poor to negligible in this zone. The current studydemonstrated that a remote sensing and GIS technique are very effective tools that can give theinitial predictions on the presence or probability of the presence of ground water in areas whichhave the same considered geological deposits for the study area.

Article
Evaluation of wastewater effluents and It's Effects on AL-WARAR Canal

Majeed Mattar Ramal

Pages: 239-258

PDF Full Text
Abstract

The research evaluated the wastewater effluents , Two pump stations discharged directly without any treatment in AL-WARAR Canal in Ramadi City ,located in the southern bank of the Canal . These effluents collects the storm water from the residential area , the drainage open channel which bypassing by septic tanks of domestic wastewater , bypassing from septic tanks of domestic wastewater. Laboratory Tests out on (December 2010 to May 2011) for the Canal (upstream) , wastewater effluents, and Canal ( downstream) to determine the quality characteristics and the wastewater effects upon the AL-WARAR Canal . The results show an increase in almost concentrations of characteristics compared to the Iraqi Standards NO. (25 –B1) in (1967) of the conservation of water resources , where the Bio-chemical oxygen demand , chemical oxygen demand and Total Bacterial Count were increased by (11, 9.7 and 535) times respectively. According to the organic load , the wastewater effluents classified as low strength . This study shows that the value of the reaction constant rate (k1) and Reaeration constant rate (k2)were about (0.187/day) and (0.556 /day ) respectively . Two stations downstream were located to determine the wastewater effects upon the Canal , Dissolved Oxygen was measured and calculated by using (STREETER –PHELPS) equations , then Sag curve of AL-WARAR Canal was determined .In spite of that the wastewater effluent does not comply with the Iraqi Standards discharged into water resources NO. (25 –B1) in (1967) , AL-WARAR Canal still comply with the Iraqi standards (NO. 25-A1) in (1967) of the conservation of water resources by the effect of self-purifications.

Article
The use of multivariate statistical techniques in the assessment of river water quality

Ammar Dawood, Maha Faroon, Yasameen Yousif

Pages: 102-112

PDF Full Text
Abstract

This study assessed the temporal and spatial water quality variability to reveal the characteristics of the Shatt Al-Arab River, Basrah, Iraq. A total of 14 water quality parameters (water temperature (T), pH, electrical conductivity (EC), Alkanets (Alk), total dissolved solids (TDS), turbidity (Tur), total hardness (TH), calcium (Ca), magnesium (Mg), chloride (Cl), sulphate (SO4), total suspended solids (TSS), sodium (Na), and potassium (k)) were analyzed Use of multivariate statistical methods in a total of three stations for the period 2016-2017. In this study was use a statistical approach to determine the water quality using the Pearson Correlation Index (PCI), Principal component analysis (PCA), and Factor Analysis (FA) were used to analyze the data. Main water pollutant sources were wastewater from agricultural drainage and industrial wastewater. Significant relationships recorded between the investigated parameters based on the results of PCI, at the 0.01 and 0.05 significance levels. Per the FA results, 77.1 % of the total variance explained by two factors.

1 - 5 of 5 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.