Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for durability

Article
Effect of Some Environmental Conditions on Durability of Clayey Soil Stabilized by Waste Lime

Ibrahaim M. Al-Kiki

Pages: 69-78

PDF Full Text
Abstract

This investigation was conducted to assess the efficacy of some environmental conditions of soil specimens stabilized with optimum waste lime content 6%. These conditions are represented by cycles of (wetting-drying-freezing), (wetting-freezing-drying), (drying-wetting-freezing), (drying-freezing-wetting), (freezing-wetting-drying) and (freezing-drying-wetting). The soil specimens were subjected to these conditions, the durability of these specimens is study by knowledge the change in unconfined compressive strength, volume change and loss in weight. The results indicated that the unconfined compressive strength decreases with cycles for all conditions, but for different percentages according to the type condition. Where the condition more effect that starting freezing-drying-wetting. Also the results show that the specimens subjected to cycles of (freezing-drying-wetting) and (wetting-freezing-drying) destroyed at the end of eight cycle, but the specimens were subjected to other conditions destroyed at the end of tenth cycle. The results show that the maximum loss in weight for specimens subjected to cycles starting wetting-freezing-drying, and the maximum value of volume change for cycles starting freezing-drying-wetting. Finally these condition are regarded very severe conditions and effect on durability of soil stabilized.

Article
Study of Some Durability Properties of Self-compacting Concrete Containing Waste Polyethylene Terephthalate

Marwah Majid, Mahmoud Mohammed

Pages: 15-30

PDF Full Text
Abstract

This study aims to investigate the durability properties and microstructural changes of self-compacting concrete (SCC) incorporating waste polyethylene terephthalate (PET) as fibers and as fine aggregate replacement. This is after exposed to saline environment (Alkalies, Sulphates, and Chlorides). PET effect into two forms was also evaluated for routine rheological properties of SCC and mechanical strength before and after exposure to sulphate salt. Five proportions of each form of PET incorporation in SCC mixtures were utilized. The volume fractions considered for PET as fibers were (0.25, 0.5, 0.75, 1.0, and 1.25)% by volume, with aspect ratio of 28%, and (2, 4, 6, 8, and 10)% by volume for fine aggregate replacements. Results indicated that the inclusion of PET adversely affected fresh propertis especially high proportions of PET as fine aggregate. Alkali silica reaction (ASR) outcomes illustrated an enhancement in the mix containing PET fibers, while fine-PET mix was slightly enhanced. Magnesium sulphate reduced mass and compressive strength of all mixes in percentages ranging from (0.18-0.90) % for mass loss and from (0.47-55.13) % for compressive strength loss. Ultrasonic pulse velocity (UPV) and dynamic modulus of elasticity (Ed) increased due to the sulphate impact except for M0.5 and M10 which decreased in both tests. Chloride's theoretical and modelled results illustrated higher diffusion coefficients and lower surface chloride content of fiber-PET mixes as compared to fine-PET mixes. The predicted SCC cover depths for fiber-PET mixes were lower than those predicted for fine-PET mixes for 20 and 50 years of service life design.

Article
Prediction of First Ply Failure of Composite Pressure Vessels Under Internal Pressure: A review

Naseer Farhood, Abdullah Singal

Pages: 76-84

PDF Full Text
Abstract

Composite pressure vessels (i.e. types III and IV) are widely used for compressed natural gas (CNG) vehicles, as storage cylinders to reduce the weight while maintaining high mechanical properties. These vessels can achieve 70-80% of weight saving, as compared to steel vessels (type I). So, prediction of first ply failure and burst pressure of these vessels is of great concern. Thus, this paper involved a review of literature regarding the first ply failure and burst pressure of composite pressure vessels (types III and IV). The review included the researches related to the simulation, mathematical modeling, and experimental analysis. The study focused on simulation-related research more than others due to the complexities of mathematical modeling of such problems in addition to the high cost of experimental tests. The results indicated that the stacking sequence of layers, vessel thickness and the type of selected composites were the main factors that mainly affect the vessel burst pressure performance. Accordingly, the optimization in the vessel structure (composite fabric architecture) parameters plays an important role in the performance of burst pressure. This in turn will lead to a high vessel durability, longer life-time and better prediction of burst pressure. Furthermore, the study showed that the prediction of first ply failure is more important than burst pressure knowledge of pressure vessels because it gives an initial prediction of vessel failure before the final failure occurrence. This in turn, may prevent the catastrophic damage of vessel.

Article
Properties of Sustainable Self- compacting Concrete Containing Treated and Modified Waste Plastic Fibers

Asmaa Hussien, Mahmoud Mohammed

Pages: 23-34

PDF Full Text
Abstract

This study aims to improve different properties of sustainable self-compacting concrete SCC containing treated and modified polyethylene terephthalate PET fibers. For this purpose, gamma ray surface treatment and geometric modification were utilized for the used PET fibers. Concrete fresh properties include slump flow, T500mm, L-box and sieve segregation while mechanical properties include compressive, split tensile strength, flexural strength, static modulus of elasticity and impact strength. Further, physical properties and related durability properties comprise dry density, ultrasonic pulse velocity, porosity and water absorption. The results obtained demonstrated that the treatment and the modification used for the PET fibers slightly reduced the fresh properties of produced sustainable SCC (slump flow, T500 mm, L-Box and sieve segregation). However, they were within the limits of the SCC specification as reported in EFNERC guidelines. Further, concrete hardened properties in terms of compressive strength, splitting tensile strength, flexural strength, modulus of elasticity, impact strength, ultrasonic pulse velocity, decrease in the dry density, decrease in porosity and water absorption increased significantly.

Article
Effect of Polymer SBR on Strength Reduction in Concrete Immersed in Drainage and Ground Water

Ghassan Subhi Jameel, Ahmed Tareq Noaman, Bevian Ismail Al-Hadithi, Abdulkader Ismail Al-Hadithi

Pages: 168-176

PDF Full Text
Abstract

Concrete structures suffer from the impact of many harmful attacking materials that affect theproperties of the main material in them, which is concrete. These structures are also, exposedto the negative impact of many hostile environments such as soils containing harmful salts andharmful acids. A number of precautions should be considered in order to protect the concreteused in such structures. Adding polymer to concrete components as a percentages weight ofcement is one of the methods for producing polymer-modified concrete, which has lowpermeability, better mechanical properties and is more resistant to the negative effects ofharmful environmental factors. The utilization of polymers could help in protecting structuresand enhancing concrete strength. In this study, concrete mixes were prepared with inclusion ofstyrene butadiene rubber (SBR) polymer at four percentages (0%, 5%, 7% and 10% by cementweight). Co-polymers of butidine with styrene (styrene-butadine rubber (SBR)), are a group oflarge-volume synthetic rubbers. High adhesion occurs between the polymer films that formand cement hydrates. This action gives improves the properties of concrete such as flexuraland compressive strength and gives also a higher durability. The investigation was extended toevaluate the compressive strength of the SBR concrete mixes immersed in three types ofwaters: tap, drainage and ground water, at three different ages. The results showed that SBRpolymer enhanced the compressive strength of concrete significantly. A comparison betweenreduction in strength of concretes immersed in these three types of waters was also presented.Moreover, the presence of SBR polymer led to reduced loss in strength of concrete specimensimmersed in drainage and ground water. A proposed model to determine the compressivestrength of concrete specimens immersed in drainage and ground waters was deduced. Thismodel could be a helpful tool for rapid and easy estimation of the strength of concretespecimens immersed in drainage and ground water at different contents of SBR polymer. Theresults showed the highest improve in compressive strength to be associated with 7% SBRmixes at the three tested ages. The increases in this strength at days 7, 28 and 56 with inclusionof 7% SBR polymer were 112.8%, 113.9% and 116%, respectively, compared to OPC mix.

Article
The Integration Between the Structural System and the Envelope System in Earthquake Resistance Design

Ali Azeez, Ali AL-Khafaji

Pages: 79-93

PDF Full Text
Abstract

Earthquakes are one of the most serious natural disasters affecting the stability and the durability of buildings, threatening the life of its occupants. These buildings should be withstanding earthquakes by both architectural and structural engineers. The Integration between structural and envelope system is negatively affected due to; the lack of architectural knowledge in earthquake resistance, and the absence of cooperation between architectural and structural engineers in earthquake resistant design. In this research the lack in the nature of the integrative relationship between the structural and envelope system of earthquake-resistant buildings design is presented. Also, he relationship between these systems, their patterns, and levels in the building to resist earthquakes are highlighted. Where the concept of integration, patterns and levels are verified, using inductive methodology (descriptive, and analytical) through election, analyzing of two different case studies. major result show that the performance pattern is the most common type of three other integration patterns. Also the envelope ,structural system response achieves an equal degree of response as both of them are integrated with each other without revoking one the role of other or affecting the optimal seismic resistance of buildings, and conclusion are presented further. 

Article
Construction Methods and Their Impact on the Productivity of the Construction Projects Site (Iraq Case Study)

Mohammed Malallah

Pages: 48-60

PDF Full Text
Abstract

This study aims to investigate the impact of various construction methods on labor productivity in Iraq, focusing on traditional, prefabricated steel structures, precast concrete, and mechanical or self-build construction techniques. The research employs a descriptive-analytical methodology, utilizing a structured survey distributed to 200 participants from different construction industry sectors, including engineers, contractors, and field workers. The survey examines key indicators of labor productivity, such as task completion speed, work quality, labor costs, safety, and project cost.The findings reveal significant differences in labor productivity across the construction methods. Traditional construction methods moderately impacted task completion speed and work quality but were less efficient in terms of cost reduction and safety. On the other hand, prefabricated and precast concrete methods demonstrated improvements in work quality, safety, and cost efficiency, although with some limitations regarding flexibility. Steel structures offered enhanced durability and faster construction times, while mechanical and self-build methods utilizing automation significantly reduced labor costs and accelerated the construction process.Based on these results, the study recommends incorporating modern construction methods, such as prefabricated and mechanical techniques, to improve overall productivity in the Iraqi construction sector. Additionally, it emphasizes the importance of training and adapting to these advanced methods to ensure long-term efficiency, safety, and cost-effectiveness in construction projects.

1 - 7 of 7 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.