Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for explicit-technique

Article
Use of Phase Change Material in Residential Walls to Reduce Cooling Load

Mustafa B. Al-Hadithi

Pages: 72-86

PDF Full Text
Abstract

This paper describes a numerical method for calculating the temperature distribution and latent heat storage (LHS) in the treated wall (TW) and non-treated wall (NTW). The developed method was assumed that the outer cement layer (Iraqi wall) enveloping the external wall of building and houses are contains paraffin wax as a phase change material (PCM). (25%) is the volume percentage of paraffin wax is mixed with cement which forming a treated layer. A comparison results between the (TW) and (NTW) has been done. The paper presents a simple calculation of case study for air-conditioning in two walls type of residential building. The outer solar air temperatures as function of day time are considered for a hot day in summer (July) for Baghdad city. The aim of this paper was to obtain physical validation of the numerical results produced from using developed FORTRAN program. This validation was obtained through a comparison of numerical solution of two different wall compositions exposed to the same external and internal load conditions. The calculations on transient heat transmissions across different walls were conducted. It was found that when using the (TW) with (PCM) produces lower surface and heat flux towards the cooling space with respect to (NTW).

1 - 1 of 1 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.