Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for fouling

Article
A Review on Recent Techniques for Boiler Tubes Corrosion Protection and Fouling Mitigation Using PLC

Raheek I. Ibrahim, Manal K. Odah, Hind A. Sami

Pages: 184-191

PDF Full Text
Abstract

 A steam boiler is a metal vessel in which a particular liquid is heated to steam. Steam is used in the production of energy in several areas as most boilers convert water to steam used in heating buildings and others. Steam boilers are exposed to corrosion and sediment as a result of salts dissolved in water, which may lead to increased temperature inside the boiler and thus the boiler explosion. The research included finding a suitable way to solve the problem of sedi-ment and corrosion by adding suitable chemicals to get rid of the dissolved salts inside the water and maintain steam boiler. To control this problem, the control system is designed to control the amount of salts in the water in the steam boiler using PLC.

Article
Improvement of Convective Heat Transfer through Ultrasound Application: A Review

Ayam Flaih, Hussein Abdali, Emad Hussein, Thiago Santos

Pages: 36-47

PDF Full Text
Abstract

Enhancing heat transfer, particularly through convection, is crucial in various industrial applications, driving ongoing interest in methods to improve heat transfer rates and the efficiency of heat transfer equipment. Ultrasound has emerged as an effective and reliable method for boosting convective heat transfer, primarily due to the unique phenomena it creates within irradiated fluids, such as sound cavitation and streaming. In heat exchanges, where forced heat convection is typically the primary technique, ultrasound has shown notable effectiveness by improving convective heat transfer and reducing fouling. This paper summarizes recent research on the application of ultrasound in both forced and free convection heat transfer systems, emphasizing studies published in the past decade. Previous research has demonstrated that the influence of ultrasound on heat transfer varies significantly between laminar and turbulent flows, necessitating thoughtful consideration in system design. While progress has been made, gaps remain in understanding the influence of flow rates across systems and the thermal enhancement provided by ultrasound in gaseous systems. Furthermore, most research is conducted in experimental settings, highlighting the need for increased studies to support industrial applications.

1 - 2 of 2 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.