Concrete structures suffer from the impact of many harmful attacking materials that affect theproperties of the main material in them, which is concrete. These structures are also, exposedto the negative impact of many hostile environments such as soils containing harmful salts andharmful acids. A number of precautions should be considered in order to protect the concreteused in such structures. Adding polymer to concrete components as a percentages weight ofcement is one of the methods for producing polymer-modified concrete, which has lowpermeability, better mechanical properties and is more resistant to the negative effects ofharmful environmental factors. The utilization of polymers could help in protecting structuresand enhancing concrete strength. In this study, concrete mixes were prepared with inclusion ofstyrene butadiene rubber (SBR) polymer at four percentages (0%, 5%, 7% and 10% by cementweight). Co-polymers of butidine with styrene (styrene-butadine rubber (SBR)), are a group oflarge-volume synthetic rubbers. High adhesion occurs between the polymer films that formand cement hydrates. This action gives improves the properties of concrete such as flexuraland compressive strength and gives also a higher durability. The investigation was extended toevaluate the compressive strength of the SBR concrete mixes immersed in three types ofwaters: tap, drainage and ground water, at three different ages. The results showed that SBRpolymer enhanced the compressive strength of concrete significantly. A comparison betweenreduction in strength of concretes immersed in these three types of waters was also presented.Moreover, the presence of SBR polymer led to reduced loss in strength of concrete specimensimmersed in drainage and ground water. A proposed model to determine the compressivestrength of concrete specimens immersed in drainage and ground waters was deduced. Thismodel could be a helpful tool for rapid and easy estimation of the strength of concretespecimens immersed in drainage and ground water at different contents of SBR polymer. Theresults showed the highest improve in compressive strength to be associated with 7% SBRmixes at the three tested ages. The increases in this strength at days 7, 28 and 56 with inclusionof 7% SBR polymer were 112.8%, 113.9% and 116%, respectively, compared to OPC mix.
The corrosion of reinforcement iron is one of the dangerous problems in middle and west of Iraq and Arabian gulf which is needed to large investigations because of increasing of chloride salts in soil and ground water and rising of temperature at summer which encourage of finding the shrinkage cracks in their two types : Plastic and drying shrinkage . cracks are easy way for harmful ions present at soil and ground water to enter through reinforced concrete making damage for protection film a rounding rein forced iron and led to rust with cracks in concrete cover a rounding rein forced iron added to its may be to cause structural damage in members of rein forced concrete because of absence of a adhesive between concrete and steel leading to structural failure . This research presents study for this problem and knowing their causes and methods to reduce it. Experimental work show that the concrete exposed to chlorides leads to decreasing in density with ratio (1.5%) and decreasing in flextural strength with ratio (138%) at age (28) day .
Initial delineation of prospecting zones of groundwater was conducted in the present studyusing remote sensing and geographic information system (GIS) techniques. It has been preparingan integrated geographic database of spatial and non-spatial data for the study area. The spatialdata were generated by using image processing software (Erdas 8.3) and GIS software (Arc view3.3) enhanced by real frequent field visits of the study area. These data include: surface featureswhich give a direct and indirect indicators of the existence of groundwater and affect to thegroundwater movement such as hydrogeomorphological, drainage density, slope, landuse andsoil maps. The non spatial data were derived primarily from real views during field visits to thestudy area and from the existing writing or previous studies. All the data generated were saved inthe GIS databank for the purpose of digitization, computational and generate the best possibleoutput results to determine the extent of possible areas where the water that exists for the purposeof prospecting. Results showed that more areas could be have very good categories of prospectzones are the southern parts of the study area, which covers about 375 Km2 while the northernareas, which covers about 164 Km2 of the study area are grouped as runoff zone. Accordingly thepossibilities of the presence of groundwater are poor to negligible in this zone. The current studydemonstrated that a remote sensing and GIS technique are very effective tools that can give theinitial predictions on the presence or probability of the presence of ground water in areas whichhave the same considered geological deposits for the study area.
The aim of the present research is studying the efficiency and performance of Mosul Dam with respect of the seepage. It was depended on the dam field observations of years 2004, 2003 and 1990. These observations included a discharge measurements and chemical analysis of seepage water from three points at the downstream left side of the dam, and the chemical analysis of reservoir water. Also, the ground water levels of grouting gallery piezometers and opening piezometers at the downstream right side were measured. All these field observations were taken with every water level of the dam reservoir. The results concluded that the dam embankments being a good efficiency with respect the seepage, however, the efficiency of the dam foundation, which presented by the grout curtain, is in a good condition in most regions, except the region limited between section (68) and (70), where the efficiency of this region is equal to (19.5%), (23.07%) and (25.55%) in years 2004, 2003 and 1990 respectively. Also, the results indicated that some sections of the grout curtain , such as section (79), being with not agreeable efficiency in 1990, where Is equal to (45.97%). But according to a continuous and intensive grouting, the efficiency of this section increased and become (73.74%) and (73%) in 2003 and 2004 respectively