The nonlinear finite element analysis has become an important tool, for the structural design and assessment of prestressed reinforced concrete members. However, design and assessment of torsion are still done with simplified analytical or empirical design methods. This paper pre-sents results from a numerical analysis using the ANSYS finite element program to simulate a prestressed concrete beams subjected to static and cyclic torque. The eight- node brick ele-ments SOLID65 are used for the idealization of concrete while the reinforcements are idealized by using 3D spar element LINK8. The steel plates are idealized by using three dimensional solid elements SOLID45. The results showed that the general behavior of the finite element models represented by torque- twist angle relationships show good agreement with the experimental results from the Abdullah's beams.
This paper presents an analytical investigation which includes the use of three dimensional nonlinear finite elements to model the performance of the space trusses by using (ANSYS 11.0) computer program. The numerical results show very good agreement (100%) with experimental results, while the graphical option reflects the behavior of the structure under the applied loads because of the ability of this option to simulate the real behavior of the structure under these loads. Also finite element models of the space truss simulate the lateral deflection of the top chord members especially at the corners, and the twisting of the bottom chords.