To control on the operation of sheet metal forming without failure, A diagram is used in which the range accepted, failure and critical deformation range are shown. This diagram is known as the Forming limit diagram. It is considered as one of the important tool to determine the formability of sheet metals. Every sheet metal has its own forming limit diagram which determines its formability, strain limit and the forming regions. In this paper, the forming limit diagrams (FLDs) were experimentally evaluated for low carbon steel sheets with different thickness (0.6, 0.75, 0.85, 1.2mm). The highest limit strain in the forming limit diagram is found in the steel sheet at thickness (1.2mm) and the lowest limits in the steel sheet at (0.6mm), this meaning that the formability improve with increase the thickness of steel sheet. The effect of load punch is higher at biaxial stretch path and the lowest at uniaxial tension path. The load punch is change with different thickness of sheet at the same path. The maximum thinning is found in the biaxial stretch path and the lowest of thinning in plane strain path for all sheets.
In recent years, the elastomer forming technique has found acceptance on the shop floor and is used increasingly as a pressure- transmitting medium for various metal-forming operations. This is due mainly to the introduction of a new range of materials and of new concepts in tooling, which have served to kindle industrial interest in the process. The purpose of this paper is to study the sheet formability with compressible die (natural rubber). The forming was occurred using hemi-spherical punch and rubber die. Experimental tests were used to know the mechanical properties for rubber and sheet materials which were brass and aluminum. After that several forming processes were prepared with a 58 mm diameter steel ball as a punch to form 0.5 thickness brass and aluminum dishes with different diameters (15-40 mm). Force-stroke history was plotted through forming to find the stiffness of formed plate with rubber die and later to compare this parameter for different diameters. Wrinkling and springback were pointed for the formed dishes. It was found that the stiffness of the formed dish increases with diameter until reaching to the diameter at which wrinkling will takes place (about 33 mm for aluminum and 28mm for brass), and then the stiffness will decreases with diameter above this value. It was found that the springback ratio (ratio of final high to the stroke) was increased with diameter until wrinkling takes place, and this ratio is greater for aluminum than that for brass. The results show that it is able to use natural rubber as a die for sheet metal forming with limitation of using small sheet thickness