Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for space-vector-modulation-svm-

Article
Review and Case Study on Control of Induction Motor Using High-Level Converter

Ayad Mahmood, Khalaf Gaeid

Pages: 41-53

PDF Full Text
Abstract

Matrix converters (MCs) have attracted significant interest and found extensive applications across multiple industries owing to their desirable characteristics. These include the capability to produce sinusoidal currents at both input and output, substantial size reduction, and enhanced reliability by minimizing significant passive components. This paper explores the potential of MC technology as a viable alternative to conventional AC-DC-AC converters in industrial applications. It discusses recent advancements in MC structural configurations, modulation/control algorithms, and multiphase structures and control systems. The paper offers an in-depth review of modern industrial uses of MC technology. It also delves into different methods for managing induction motors, particularly the DTC (Direct Torque Control) approach. The study explores the intricacies of DTC and its relationship with SVM. The primary research objective is to examine the performance of an IM when operated with an SVPWM inverter, focusing on harmonic analysis of voltages and currents. Various PWM methods regulate the voltage and frequency supplied to the IM. Sinusoidal Pulse Width Modulation (SPWM) and SVPWM are the two most commonly used 3-phase Voltage Source Inverter strategies. The growing adoption of SVPWM is driven by its ability to reduce harmonic content in voltage and enhance the fundamental output voltage of the IM. Consequently, this study models a DTC-SVM theory-driven IM using MATLAB/SIMULINK to control the speed of induction motors. The following values were calculated for the system: Quality factor=2.236, Damping ratio=4.45, and the cut-off frequency (fc=355.88H).

1 - 1 of 1 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.