Many studies were achieved in order to improve water efficiency treatment and to remove high turbidity by using Coagulants like Alum with Coagulants aid like polymers. Many researches explain the effect of these polymers on the removal of high water turbidity over the past years attempting to improve the coagulation and flocculation processes. Several experiments were performed to investigate the effect of using other types of coagulants aid on the percentage removal of turbidity and to find the optimum dosage of coagulant (alum) and coagulant aid. The coagulants used in this study were alum, Porcelanite and Silica Gel which are used in general company of ceramic and glass factory in Ramadi City as liquid state .The initial turbidity at 450 NTU was used with floc growth and floc formation was studied for Kaolinite 10 µm particles size. The results were obtained and plotted to show the effect of using different dosages of the mentioned coagulants on the residual and percentage removal of turbidity. Also, other parameters like TDS, Ec, pH and salt were calculated. The results indicated that the efficient coagulant type with dose of 30 mg/l is 4.56 NTU residual turbidity and removal percentage of 98.98% by using alum with silica, with the percentage of alum is 60% and 40% of Silica and pH value 7.66.
A steam boiler is a metal vessel in which a particular liquid is heated to steam. Steam is used in the production of energy in several areas as most boilers convert water to steam used in heating buildings and others. Steam boilers are exposed to corrosion and sediment as a result of salts dissolved in water, which may lead to increased temperature inside the boiler and thus the boiler explosion. The research included finding a suitable way to solve the problem of sedi-ment and corrosion by adding suitable chemicals to get rid of the dissolved salts inside the water and maintain steam boiler. To control this problem, the control system is designed to control the amount of salts in the water in the steam boiler using PLC.
This study assessed the temporal and spatial water quality variability to reveal the characteristics of the Shatt Al-Arab River, Basrah, Iraq. A total of 14 water quality parameters (water temperature (T), pH, electrical conductivity (EC), Alkanets (Alk), total dissolved solids (TDS), turbidity (Tur), total hardness (TH), calcium (Ca), magnesium (Mg), chloride (Cl), sulphate (SO4), total suspended solids (TSS), sodium (Na), and potassium (k)) were analyzed Use of multivariate statistical methods in a total of three stations for the period 2016-2017. In this study was use a statistical approach to determine the water quality using the Pearson Correlation Index (PCI), Principal component analysis (PCA), and Factor Analysis (FA) were used to analyze the data. Main water pollutant sources were wastewater from agricultural drainage and industrial wastewater. Significant relationships recorded between the investigated parameters based on the results of PCI, at the 0.01 and 0.05 significance levels. Per the FA results, 77.1 % of the total variance explained by two factors.