Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for thermal-comfort-air-conditioning-turbulence-k-predicted-mean-vote

Article
Numerical study of thermal comfort levels in a conference hall

Mhaned A. Mudher, Ahmed A. Najeeb ao

Pages: 170-183

PDF Full Text
Abstract

The present study was concerned with the analysis, simulation of the air flow pat-terns and thermal comfort levels in the University of Anbar at conferences hall (Ibn Al Haitham hall). The study was performed in a hot - dry season. The pur-pose of the present work was to investigate the level of thermal comfort and the influence of the air flow on the flow patterns at the conferences hall. It has been assumed that the total number of occupying audiences in the hall was approxi-mately 100 persons. The present work simulated and analyzed four hypothetical cases, namely: in the first case, the hall was assumed as an empty place, whereas the other three cases were performed by redistribution for the three units of air conditioning, the hall was assumed as a filled place with persons in September 2019. The study was accomplished using simulation techniques, a CFD code (FLUENT 6.2) v.17, which is commercially available. The CFD modelling tech-niques were applied to solve the continuity, momentum and the energy conserva-tion equations in addition to the Turbulence k-є (RNG) model equations for a tur-bulence closure model. Thermal comfort was assessed by finding the values of predicted mean vote (PMV), predicted percentage of dissatisfied (PPD), and ASHRAE standard-55. In conclusion, the second case was the superior in compar-ison to these other cases. It was noted that the PMV value was 0.17, whereas the PPD value was 6.79 at the breathing level.

1 - 1 of 1 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.