Ramadi city is suffering from severe flood problems during rainfall season as in many cities in developed countries. Storm Water Management Model (SWMM) was used to simulate storm sew-er network in the study area and depending on design rainfall intensity of 9.6 mm/hour. The rainfall intensity was proposed to increased by two to three times of the design intensity because of the absence of metrological stations in the study area to record rainfall intensity data of the rain storm. The intensity increasing by three times led to maximizing the flood risk by 43%. The proposed management to overcoming this problem is linking the collateral lines in Al-Andalus and Alhoz suburbs by additional pipes, this method reduces the percentage of flooding to 31%. Moreover, Economic Indicators (EI) were suggested to evaluate the cost of the network develop-ment. The area index ( ) which represents the total cost of the added pipes to the total area of the suburb, and the longitudinal index ( ), which represents the total cost of the added pipes to the length of the main pipe, the magnitudes of these indexes are 178 US dollar/hectare, and 57 US dollar/m respectively.
Management of water resources become one of the most important subjects in the human's life. The water sustains life on earth, therefore; more care for water management is necessary. In the last years, studies show water use will be more in the world as result of rapid increase in population, industrialization, and urbanization etc. The evaporation losses from dam's reservoirs and lagoon form very huge losses in water resources. The annual evaporation depth losses in Iraqi Western Desert is about (2.25 -3) meter, this depth store the highest percentage of the small dams. Sub-surface storage reduces evaporation losses and maintains water quality by minimizing salt concentration. In present study, three tanks are used to simulate the subsurface reservoirs to study the effectiveness of underground storage on reducing the evaporation loss. Each tank have squares cross section tanks of (80) cm length and (40) cm depth and filled up to (34) cm with different graded soil (labeled as A, B with coarse soil, and D with fine soil) to simulate the storage below the ground. While the forth tank filled with water (labeled as C) to represent the reservoir of direct evaporation for comparison study. The present study considers three parameters that can controlled the evaporation from subsurface reservoirs: (a) temperature variation, (b) water table variation, and (c) material properties such as porosity. The field study continues for four months, it was started at Jun.11, 2016 and ended at Dec. 15, 2016 in the Erbil city at north of Iraq. The results showed evaporation losses are reduced by using subsurface storage reservoir with gravel in comparison with free surface evaporation. The evaporation losses are reduced about 46 % , 39% , 64% when the water table below gravel surface range from 5 to 10 cm , while at 20 cm depth of the water table the evaporation reduction is about (85 % to 86% 95%) from A, B and D tanks with porosity 0.65 ,0.67 and o.35 for A ,B and D tanks, respectively..
The research aims evaluates the water consumption and future demand by using the WEAP program. Five scenarios have been adopted, which is the reference scenario that showed the results of increase in water demand from (100) million cubic meters in 2015 to (397) MCM in 2035 with a water deficit in 2035 to (38) MCM. Modern irrigation methods reduce the water deficit from (38-2.9) MCM. While the use of underground water reduced the deficit from (38-26) MCM. As for the wastewater reuse scenario, the deficit decreased from (38-35) MCM. Reducing the per capita share did not reduce the water deficit.