The detection of faults in electronic circuits is crucial to ensure the proper performance and reliability of electronic applications that utilize these devices. This work discovers, for the first time, that a direct tester board for fault diagnosis can be used not only for the intended measurement of current and voltage but also for studying the potential development of these magnitudes in inaccessible locations, as it detects register transfer level signals through oscilloscopes with low acquisition speeds. The experimental analysis carried out combines the use of commercial software with spatial distribution tracking and the exploitation of the sizes of network links in their computer graphical representation. The proper detection of malfunctions in electronic systems is crucial for enhancing their performance and reliability. We intend to explore the troubleshooting of analog electronic systems, for which we use wide-band direct tester boards. To evaluate its performance in routine practice, we perform experimentation using two different analog circuits designed. They consist of conventional operational amplifiers and element modeling based on equivalent resistance-capacitance networks. Given the procedure followed, commercial programs were used. Special mention should be made of the conclusion matrix, which is interesting when selecting suitable diagnostic parameters. The effectiveness of direct measurement based on integrated probes in the two projects, which allowed for fault insertion, was also confirmed. The results and discussions were enriched by the summarized experimental test report. The work concludes with a reflection on the relationship between this work and the existing state of the art, as well as the new challenges posed by international researchers.
Our project was divided into two distinct sections, circuit transmitting and receiving ultrasoundWave Based on Laser Light. A Wien Bridge and a Triangle Wave Oscillators used to obtain a sineand a triangular wave, respectively. A comparator circuit which produces Pulse Width Modulation(PWM) that has the same frequency for triangle wave. The PWM was used to drive laserdiode that produced laser light through by MOSFET transistor and received this light by receivingcircuit which consists of a photodiode with resistor as a voltage divider, amplifier circuit to amplifythe signal and filter to get any desired frequency. The main objective of this project primarilywas to realize a transmission-reception system to transfer ultrasound Frequency via Laser withouta guiding medium, using modulation with little quality loss.
Determinations of unsaturated soil parameters using experimental procedures are time consuming and difficult. In recent years, the soil–water characteristic curve (SWCC) has become an important tool in the interpretation of the engineering behavior of unsaturated soils. Difficulties associated with determining such parameters have justified the use of indirect determination. This paper presents the general nature of the SWCC for soils with different plasticity limits, index and gradation, in terms of gravimetric water content and degree of saturation versus soil matric suction from Anbar governorate. In order to investigate possible relationships between the plasticity limits, index, percent passing no.200 and SWCC, 7 type of soils were tested to find its SWCC experimentally and compared the result with the curves obtained from different model presented in the literature. The objectives of the paper were to check the validity of these models with the experimental results. The results shows a good agreement and to present a simple method for inferring the SWCC for soils, taking into account the liquid limit, plastic limit, plasticity index and percent of fines passing sieve no.200.