Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for Dams and Water Resources Engineering

Article
Evaluating the Effect of Supplementary Irrigation on Improvement of Economic Water Productivity for Winter Wheat

Ali Hamid Abdullah, Sabah Anwer Almasraf, Zainab Abdulelah Al Sudani

Pages: 60-65

PDF Full Text
Abstract

Utilizing of subsurface water retention technology is a modern technique to retain and save the application water for sustainability of agricultural production through scheduling and management the irrigation processes. The goal of this paper is to evaluate the effect of the supplementary irrigation and rainfed water on improvement of economic water productivity for winter wheat. The experiment was conducted in open field, within Joeybeh Township, located in east of the Ramadi City, in Anbar Province, for the growing season 2018-2019. Two plots were used for comparison process, the first plot where membrane trough below the root depth was installed and supplementary irrigation system was conducted beside the rainfed water and according to scheduling the irrigation process as checkbook method. While in second plot, the membrane trough was installed and only rainfed water was depend on. Cultivated date of winter wheat was December, 20th, 2018, and the harvest date was May, 10th, 2019. The obtained result was showed that the crop yield and economic water productivity from the first plot and the second plot were equaled to 0.52 kg/m2 and 0.35 kg/m2, and 930 ID/m3 and 800 ID/m3, respectively. The increasing value of crop yield and economic water productivity in the first plot was more than that in the second plot by 49 % and 16 %, respectively. The benefits of applying supplementary irrigation system with installing the new techniques of retaining the applied water were sufficient in improvement the crop yield and accordingly improved value of the economic water productivity.

Article
Sustainable Management of Water Resources in The Upper Euphrates Basin-Iraq

S. Mohammad, A. Mustafa, J. Al-Somaydaii

Pages: 211-220

PDF Full Text
Abstract

The research aims evaluates the water consumption and future demand by using the WEAP program. Five scenarios have been adopted, which is the reference scenario that showed the results of increase in water demand from (100) million cubic meters in 2015 to (397) MCM in 2035 with a water deficit in 2035 to (38) MCM. Modern irrigation methods reduce the water deficit from (38-2.9) MCM. While the use of underground water reduced the deficit from (38-26) MCM. As for the wastewater reuse scenario, the deficit decreased from (38-35) MCM. Reducing the per capita share did not reduce the water deficit.

Article
The use of multivariate statistical techniques in the assessment of river water quality

Ammar Dawood, Maha Faroon, Yasameen Yousif

Pages: 102-112

PDF Full Text
Abstract

This study assessed the temporal and spatial water quality variability to reveal the characteristics of the Shatt Al-Arab River, Basrah, Iraq. A total of 14 water quality parameters (water temperature (T), pH, electrical conductivity (EC), Alkanets (Alk), total dissolved solids (TDS), turbidity (Tur), total hardness (TH), calcium (Ca), magnesium (Mg), chloride (Cl), sulphate (SO4), total suspended solids (TSS), sodium (Na), and potassium (k)) were analyzed Use of multivariate statistical methods in a total of three stations for the period 2016-2017. In this study was use a statistical approach to determine the water quality using the Pearson Correlation Index (PCI), Principal component analysis (PCA), and Factor Analysis (FA) were used to analyze the data. Main water pollutant sources were wastewater from agricultural drainage and industrial wastewater. Significant relationships recorded between the investigated parameters based on the results of PCI, at the 0.01 and 0.05 significance levels. Per the FA results, 77.1 % of the total variance explained by two factors.

Article
Improving the Irrigation Systems for the Fallujah Irrigation Projects by Using Water Evaluation and Planning Model (WEAP)

Aya Hamdi, Isam Abdulhameed, Ibtihal Mawlood

Pages: 64-75

PDF Full Text
Abstract

In this study, the water evaluation and planning WEAP model was used to improve the Fallujah irrigation project with 63,000 hectares and an annual budget get 1,476 million m3/ yiod (2020-2021). The results showed the total Water used was 1,272 million m3/year and equaled 86% of Fallujah irrigation budget. The annual production was 524.4 million Kg/year for Fallujah irrigation, and total economic returns were 393.6 million $/year. The study outlined two scenarios for enhancing the irrigation system. The first scenario entailed implementing a sprinkler irrigation system for wheat and barley across all projects. This resulted in a production increase from 524.4 to 625.7 million kilograms per year and a corresponding rise in economic returns from 393.6 to 427.2 million annually. In the second scenario, a sprinkler system was adopted for wheat and barley and a trickle system for other crops. This approach led to production growth from 524.4 to 1164.9 million kilograms per year and a surge in economic returns from 393.6 to 559.4 million annually.

Article
Effect of Polymer SBR on Strength Reduction in Concrete Immersed in Drainage and Ground Water

Ghassan Subhi Jameel, Ahmed Tareq Noaman, Bevian Ismail Al-Hadithi, Abdulkader Ismail Al-Hadithi

Pages: 168-176

PDF Full Text
Abstract

Concrete structures suffer from the impact of many harmful attacking materials that affect theproperties of the main material in them, which is concrete. These structures are also, exposedto the negative impact of many hostile environments such as soils containing harmful salts andharmful acids. A number of precautions should be considered in order to protect the concreteused in such structures. Adding polymer to concrete components as a percentages weight ofcement is one of the methods for producing polymer-modified concrete, which has lowpermeability, better mechanical properties and is more resistant to the negative effects ofharmful environmental factors. The utilization of polymers could help in protecting structuresand enhancing concrete strength. In this study, concrete mixes were prepared with inclusion ofstyrene butadiene rubber (SBR) polymer at four percentages (0%, 5%, 7% and 10% by cementweight). Co-polymers of butidine with styrene (styrene-butadine rubber (SBR)), are a group oflarge-volume synthetic rubbers. High adhesion occurs between the polymer films that formand cement hydrates. This action gives improves the properties of concrete such as flexuraland compressive strength and gives also a higher durability. The investigation was extended toevaluate the compressive strength of the SBR concrete mixes immersed in three types ofwaters: tap, drainage and ground water, at three different ages. The results showed that SBRpolymer enhanced the compressive strength of concrete significantly. A comparison betweenreduction in strength of concretes immersed in these three types of waters was also presented.Moreover, the presence of SBR polymer led to reduced loss in strength of concrete specimensimmersed in drainage and ground water. A proposed model to determine the compressivestrength of concrete specimens immersed in drainage and ground waters was deduced. Thismodel could be a helpful tool for rapid and easy estimation of the strength of concretespecimens immersed in drainage and ground water at different contents of SBR polymer. Theresults showed the highest improve in compressive strength to be associated with 7% SBRmixes at the three tested ages. The increases in this strength at days 7, 28 and 56 with inclusionof 7% SBR polymer were 112.8%, 113.9% and 116%, respectively, compared to OPC mix.

Article
Minimizing Evaporation Losses from Small Reservoirs (Wadi Houran-case study)

Rasha I. Naif a, Isam M. Abdulhameed

Pages: 76-82

PDF Full Text
Abstract

minimizing the surface area of a reservoir during maximum evaporation losses period. A mathe-matical relationship linking the depth of water with the surface area of the reservoir has been formulated, and its integration can be used to estimate conservable water quantities. Reducing the water level in the reservoir to the minimum permissible level before the dry months has re-duced the evaporation losses by 65% and 51% for the two scenarios. These two scenarios have been conducted by assuming that the dry months start with the presence of the water level in the reservoir at a height of 14 and 12 m, respectively. On the other hand, evaporation losses during drought months have been decreased by 24%. By this technique, it can be possible to obtain wide areas suitable for agriculture, contributing to the economic and social development of the region. Also, Depth index(DI) suggested in this study and defined as the ratio of volume of the water in the reservoir to corresponding surface area, to compare the location of the best dam among the 13 proposed dams in Wadi Houran by reducing evaporation losses. The results of this index showed the best location was at DI=10.901 in DM 7, and the worst is at DI=2.425 in DM 8.

Article
Emperical and Numerical Solution Of Seepage Problems Underneath Hydraulic Structures

Rafid Alboresha, Uday Hatem

Pages: 1-9

PDF Full Text
Abstract

Hydraulic structures are structures submerged or partially submerged in water, they’re used to retain or divert natural water flow. Any hydraulic structure that retains water is faced with seep-age problems as the water seeks the path with the least resistance through or under the hydraulic structure. If the water carries materials as it flows or exerts high pressure on the floor of the structure, it will cause failures such as piping and cracks and there are many ways to prevent that, including cutoffs. In this paper, seepage is analyzed for different cases by using the empirical method (Khosla’s theory) and the numerical method by using computer software (SEEP/W). The results had some slight differences between the two methods as a result of not taking into ac-count the effect of soil characteristics of the empirical method. However, the water pressure heads underneath the impervious floor that calculated by the numerical method were greater

Article
Evaluation and treatment of waste water effect on groundwater quality (the University of Anbar area as a case study)

Mohammed Freeh Sahab

Pages: 139-145

PDF Full Text
Abstract

This research focuses on studying the impact of different sources of wastewater, such as do-mestic, industrial, agricultural, etc. upon groundwater. The swamp of contaminated water collec-tion within the Al-Anbar University area was taken as a case study for this research. This swamp has a pond that works as a collection basin for different sources of wastewater mainly domestic waste coming from leakage of contaminated water from the septic-tank of the residential com-plex of students. This contaminated water will leak over time within the folds of soil due to per-meability and the effect of land attraction and reach the levels of groundwater.The presence of polluted water near groundwater is an environmental hazard and harmful because this leakage water has different diseases and germs, which could pose a danger to human health. Different samples of these sources were taken from different places at different times and some physical, chemical, and biological tests were then conducted. Wastewaters characterization was also investigated in this study to make an assessment for water quality and find out a proper treatment method. Data obtained from this study show different levels of pollutants, which could highly affect groundwater quality. A proper and advanced treatment method was also proposed in this study, depending on the wastewater characterization results. The purpose of this research is wastewater treatment using the physical method with coagulation and Flocculation processes with local coagulants to reduce pollutants impact on groundwater.The results showed the addi-tion of alum at 35 mg/l increased the removal efficiency by 80.7% at the settling time of 60 min, and the addition of 35 mg/l of the lime increased the removal efficiency by 63.9% at the same settling time.It has been proven that the use of alum is more effective than lime for sedimenta-tion suspended matter. The optimum dosage and settling time are 20 mg/l and 60 min respec-tively.

Article
Simulation of Storm Sewer Network Using a Storm Water Man-agement Model (SWMM), Ramadi City as a Case Study

Ethar I. Mohammad, Ayad S. Mustafa, Ammar Adham

Pages: 83-89

PDF Full Text
Abstract

Ramadi city is suffering from severe flood problems during rainfall season as in many cities in developed countries. Storm Water Management Model (SWMM) was used to simulate storm sew-er network in the study area and depending on design rainfall intensity of 9.6 mm/hour. The rainfall intensity was proposed to increased by two to three times of the design intensity because of the absence of metrological stations in the study area to record rainfall intensity data of the rain storm. The intensity increasing by three times led to maximizing the flood risk by 43%. The proposed management to overcoming this problem is linking the collateral lines in Al-Andalus and Alhoz suburbs by additional pipes, this method reduces the percentage of flooding to 31%. Moreover, Economic Indicators (EI) were suggested to evaluate the cost of the network develop-ment. The area index ( ) which represents the total cost of the added pipes to the total area of the suburb, and the longitudinal index ( ), which represents the total cost of the added pipes to the length of the main pipe, the magnitudes of these indexes are 178 US dollar/hectare, and 57 US dollar/m respectively.

Article
Analysis of seepage through Al-Wand Dam by using SEEP/W ModelAnalysis of seepage through Al-Wand Dam by using SEEP/W Model

Mahmood Gazey Jassama, Sinan Salah Abdulrazzaqb

Pages: 33-37

PDF Full Text
Abstract

In geotechnical engineering, considered the seepage of water that occur through the soil medium is one of the important problems that must be accurately studied; therefor, knowledge of influencing factors on the value of seepage for the soil is a necessary when designing an earth dam. In this study seepage through Al-Wand dam was analyze by using SEEP/W model. It is a sub- program of Geo- Studio where it used to determine amount of seepage through the body of the dam and study the effect of the change of thickness of core and effect of construction without filter in amount of leakage. The results were that the quantity of leakage was small effected when reducing the thickness of core and when construct the Al-Wand dam without filter at different level of water in upstream.

Article
Numerical Modelling and Experimental Investigation of Water Distribution in Stratified Soil Under Subsurface Trickle

Ayad Mohammed, Basim Abed

Pages: 94-101

PDF Full Text
Abstract

The studying of the distribution of wetting patterns in soils having a stratified profile is of great importance due to the presence of this type of profile in abundance in agricultural lands, including greenhouses. Therefore, there was a need to develop a numerical program that predicts the dimensions of the wet area of the subsurface drip irrigation system under different operating conditions for purpose design and manage these systems properly to avoid water losses resulting from evaporation or deep penetration. The present study aims to develop a two-dimension model simulates the wetting pattern in stratified soils using (HYDRUS-2D) software and study the effect of soil hydraulic properties and different operating conditions on the progress of the wetness pattern and the interference pattern between two wetting fronts. Laboratory experiments were carried out for the system of subsurface drip irrigation in stratified soils that consisted of three layers (silty clay loam soil, loamy sand soil, and sand soil) arranged from bottom to up.  Three different emitter flow rates 0.5, 1, and 2 l/h were tested, as well as three different initial moisture contents for each soil layer were considered. The interference pattern between two wetting fronts of two emitters with different spacing between emitters 30, 40, and 50 cm was studied. A numerical model was developed to guess the horizontal and vertical dimensions of the wetting zone for the single emitter and the pattern of interference between the two wetting fronts of two emitters. The predicted values obtained from the numerical model were compared with those obtained from laboratory experiments. Statistical analysis of the obtained data showed that the developed numerical model has a good ability to guess the dimensions of the wet pattern of the single and the two emitters and there were good agreements between the predicted and the experiments results and minimum values of RMSE ranged between 0. 5 and 3.6 were achieved.

Article
Dam and Reservoir System Management based on Genetic Algorithms

Mohammed Ahmed

Pages: 46-52

PDF Full Text
Abstract

Indeed, there are many hydrology variables influence on the operating of dam and reservoir system. Thus, modelling of dam operation is a complicated issue due to the nonlinearity of such hydrological parameters. Hence, the identification of a modern model with a high capacity to cope with the operation of the dam is extremely important. The current research introduced good an optimization algorithm, namely Genetic Algorithm (GA) to find best operation rules. The main aim of the suggested algorithm is to minimize the difference between irrigation demand and water release value. The developed algorithm was applied to find operation rules for Timah Tasoh Dam, Malaysia. This research used significant evaluation indexes to examine the algorithms' performance. The results indicated that the GA method achieved low Vulnerability, high Resilience and Reliability. It has been demonstrated that the GA method will be a promising tool in dealing with the problem of dam operation.

Article
Performance Study of Fluent-2D and Flow-3D Platforms in the CFD Modeling of a Flow Pattern Over Ogee Spillway

Ahmed Imad Rajaa, Ammar Hatem Kamela

Pages: 221-230

PDF Full Text
Abstract

Recently, the investigations studies of simulating flow over spillways have increased using numerical models. Due to its important structure in the dams to pass flood wave to the downstream safely. Researches finding have shown that CFD (Computational fluid dynamics) models as the numerical method are a perfect alternative for laboratory tests. Performance analysis of the CFD platforms Ansys Fluent-2D and Flow-3D are presented, focus on finding the variations between the numerical results of the two programs to simulate the flow over ogee spillway. The present study treats the turbulence using RNG k-ε of RANS approach, and also use the Volume of Fluid (VOF) algorithm to track the water-air interaction. The Fluent-2D and Flow-3D accuracy are assessed by comparing representative flows variables (velocity; free surface profiles; pressure; and the turbulent kinetic energy). The results of both codes have been also compared with experimental data. The results of the analysis show an excellent agreement between the two platforms data, which could assist in the future by using both programs to calibrate each other, rather than traditionally relying on laboratory calibration models.

Article
OPTIMUM DESIGN OF BUTTRESS DAM USING GENETIC ALGORITHM

Noor ALBayati, Chelang Arslan

Pages: 40-52

PDF Full Text
Abstract

Designing large structures like dams requires carefully selecting various geometric, hydraulic, and structural characteristics. The required structural design and performance criteria are considered when selecting these characteristics. In order to find the best solution, a variety of restrictions must simultaneously be carefully taken into account. This study presents an effective method for determining the optimal shape design for concrete buttress dams. The research was divided into two crucial phases. The dam's initial design and subsequent modeling were mostly done using DIANA FEA and traditional design and stability analysis. After that, a genetic algorithm was used on the MATLAB platform to control optimizing the dam's shape.  Three design factors were used in this phase to alter the goal function and to reduce the amount of Concrete used, which decreased project costs. These variables covered three areas of the buttress's cross-section. Two important limitations were scrutinized during this optimization process: establishing a safety margin against overtopping and preventing sliding. The analysis included a detailed assessment of Shear friction stability to complete a thorough stability study. The optimization efforts had a spectacular result, resulting in a significant 52.365% reduction in the total volume of Concrete used, dropping from 19147.5 cubic meters to 9122.55 cubic meters. This decrease was made possible by reducing three distinct components (X1, X2, X3), with respective proportions of 37.5%, 13.33%, and 30%, including two segments related to the buttress and the final segment linked (slab) to the strip footing.

1 - 14 of 14 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.