Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for effectiveness

Article
Enhancement of Adiabatic Film Cooling Effectiveness by Using Conical Shape Hole

Assim. H. Yoosif, nan nan, Kutaeba J. M. AL-Khishali, nan nan, Falah F. Hatem

Pages: 465-478

PDF Full Text
Abstract

Film cooling is one of the methods used to protect the surfaces exposed to hightemperature flows, such as those exist in gas turbines. It involves the injection of coolant fluid (at a lower temperature than that of the main flow) to cover the surface to be protected. This injection is through holes that can have various shapes; simple shapes, such as those with straight cylindrical or shaped holes (included many holes geometry, like conical holes). The computational results show that immediately downstream of the hole exit, a horseshoe vortex structure consisting of a pair of counter-rotating vortices is generated. This vortex generation affected the distribution of film coolant over the surface being protected. The fluid dynamics of these vortices are dependent upon the shape of the film cooling hole, and blowing ratio, therefore the film coolant coverage which determines the film cooling effectiveness distribution and also has an effect on the heat transfer coefficient distribution. Differences in horseshoe vortex structures and in resultant effectiveness distributions are shown for cylindrical and conical hole cases for blowing ratios of 0.5 and 1. The computational film cooling effectiveness values obtained are compared with the existing experimental results. The conical hole provides greater centerline film cooling effectiveness immediately at the hole exit, and better lateral film coolant coverage away of the hole exit. The conical jet hole enhanced the average streamwise adiabatic film cooling effectiveness by 11.11% and 123.2% at BR= 0.5 and 1.0, respectively, while in the averaged lateral adiabatic in the spanwise direction, the film cooling effectiveness enhanced by 61.75% and 192.6% at BR= 0.5 and 1.0, respectively

Article
Evaluation of Overall Resource Effectiveness for Job Shop Production System

Lamyaa Mohammed Dawood, Anat Amer Khudairb

Pages: 362-371

PDF Full Text
Abstract

ORE addresses various kinds of losses associated with manufacturing system which can be targeted for initiating improvements. Evaluating ORE will is helpful to the decision maker(s) for further analysis and continually improves the performance of the resources. Overall Resource Effectiveness (ORE) encompasses seven factors are; performance, quality rate, readiness, changeover efficiency, availability of material and availability of manpower. In this research Job shop production of General Company for hydraulic industries, with focus on Damper and Tasks Factory (DTF)is tested as a case study for two of the most customer demand rear dampers (Samaned and Nissan). Data are collected and analyzed for years 2016-2017 to evaluate of ORE values. Results show that process performance factor among other seven factors have the less value causing the highest loss in ORE decrease. Where the highest ORE value is (58.6%) for Nissan and (69.3) for Samaned rare production. Also, time loss due to set up time is detected where it ranges from 3% to about 13% per month for the above mentioned two tested dampers. Results are generated employing Minitab Version 17, Quality Companion Version 3 soft wares. It is recommended to introduce SMED (Single Minute Exchange of Dies) concept that could decrease losses in set up time .Also improvements in maintenance programs are vital, and above all improving process performance values is essential by employing lean manufacturing that result in fast outcomes ,and TQM process improvement strategy for long term outcomes these two process performance strategies may enhance ORE values therefore, decrease losses, and consequently increase quality and productivity.

Article
Optimizing Cloud-Edge Integration for Task Scheduling in Smart Manufacturing Lines: A Multi-objective Method

Ahmed Ahmed, Mohammed Adam, Ari Guron, ali husien

Pages: 21-35

PDF Full Text
Abstract

The convergence of cloud and edge computing in smart manufacturing offers significant potential for improving efficiency in Industry 4.0. However, task scheduling in this context remains a complex, multi-objective challenge. This study introduces a novel Cloud-Edge Smart Manufacturing Architecture (CESMA), leveraging a hybrid approach that integrates NSGA-II and the Improved Monarch Butterfly Optimization (IMBO) algorithms. The combination utilizes NSGA-II's global search and non-dominated solution capabilities with IMBO's fine-tuning and local optimization strengths to enhance task scheduling performance. Where CESMA combines the scalability and analytics power of cloud computing with edge-based real-time decision-making to address the dynamic demands of smart manufacturing. Through extensive simulations and experiments, the feasibility and effectiveness of CESMA are validated, showing improved task scheduling quality, resource utilization, and adaptability to changing conditions. This research establishes a robust platform for managing the complexities of task scheduling in cloud-edge environments, advancing intelligent manufacturing processes, and contributing to the integration of evolutionary algorithms for real-time industrial decision-making

Article
Experimental Investigation about the Parameters that Effect on Evap-oration from Sub-storage Reservoir

Isam M. Abdulhameed, Ammar Hatem Kamelb, Sura Ibraheemc

Pages: 260-266

PDF Full Text
Abstract

Management of water resources become one of the most important subjects in the human's life. The water sustains life on earth, therefore; more care for water management is necessary. In the last years, studies show water use will be more in the world as result of rapid increase in population, industrialization, and urbanization etc. The evaporation losses from dam's reservoirs and lagoon form very huge losses in water resources. The annual evaporation depth losses in Iraqi Western Desert is about (2.25 -3) meter, this depth store the highest percentage of the small dams. Sub-surface storage reduces evaporation losses and maintains water quality by minimizing salt concentration. In present study, three tanks are used to simulate the subsurface reservoirs to study the effectiveness of underground storage on reducing the evaporation loss. Each tank have squares cross section tanks of (80) cm length and (40) cm depth and filled up to (34) cm with different graded soil (labeled as A, B with coarse soil, and D with fine soil) to simulate the storage below the ground. While the forth tank filled with water (labeled as C) to represent the reservoir of direct evaporation for comparison study. The present study considers three parameters that can controlled the evaporation from subsurface reservoirs: (a) temperature variation, (b) water table variation, and (c) material properties such as porosity. The field study continues for four months, it was started at Jun.11, 2016 and ended at Dec. 15, 2016 in the Erbil city at north of Iraq. The results showed evaporation losses are reduced by using subsurface storage reservoir with gravel in comparison with free surface evaporation. The evaporation losses are reduced about 46 % , 39% , 64% when the water table below gravel surface range from 5 to 10 cm , while at 20 cm depth of the water table the evaporation reduction is about (85 % to 86% 95%) from A, B and D tanks with porosity 0.65 ,0.67 and o.35 for A ,B and D tanks, respectively..

Article
Prediction Load-Settlement of Bored PileS Using Artificial Neural Network

Omer Jamel, Khalid Aljanabi

Pages: 17-24

PDF Full Text
Abstract

Pile foundations are typically employed when top-soil layers are unstable and incapable of bearing super-structural pressures. Accurately modeling pile behavior is crucial for ensuring optimal structural and serviceability performance. However, traditional methods such as pregnancy testing, while highly accurate, are expensive and time-consuming. Consequently, various approaches have been developed to predict load settlement behavior, including using artificial neural networks (ANNs). ANNs offer the advantage of accurately replicating substrate behavior's nonlinear and intricate relationship without requiring prior formulation.This research aims to employ artificial neural network (ANN) modeling techniques to simulate the load-settlement relationship of drilled piles. The primary aims of this study are threefold: firstly, to assess the effectiveness of the generated ANN model by comparing its results with experimental pile load test data; secondly, to establish a validation method for ANN models; and thirdly, to conduct a sensitivity analysis to identify the significant input factors that influence the model outputs. In addition, this study undertakes a comprehensive review of prior research on using artificial neural networks for predicting pile behavior. Evaluating efficiency measurement indicators demonstrates exceptional performance, particularly concerning the agreement between the predicted and measured pile settlement. The correlation coefficient (R) and coefficient of determination (R^2) indicate a strong correlation between the predicted and measured values, with values of 0.965 and 0.938, respectively. The root mean squared error (RMSE) is 0.051, indicating a small deviation between the predicted and actual values. The mean percentage error (MPE) is 11%, and the mean absolute percentage error (MAPE) is 21.83%.

Article
Improvement of the soft soil by cement column: Review Study

jasim ismael, Mohammed Faris, Abdulrahman Aldaood

Pages: 82-99

PDF Full Text
Abstract

Deep mixing technology is used to improve the engineering properties of soil. In this review, previous studies on the properties and problems of weak soils were collected and explained, focusing on silty soils found globally and locally. The study also includes a discussion of physical and chemical improvement methods, specifically (cement columns). The advantages of deep mixing technology are also covered from an engineering and economic point of view, as well as its relationship to the environmental impact, as it is one of the sustainable development techniques due to its use of environmentally friendly materials. In addition, one of the objectives of this research is to study the methods of adding cement, whether in the form of powder (dry method) or mortar (wet method). A comparison was made between them to clarify the advantages and disadvantages. It was found that what distinguishes the use of the dry method from the wet method is that the former is more common. The method's effectiveness depends on the soil's moisture content, so the technique is ineffective in soils with less than 30% water content. As cement hydration produces a cementitious gel (CSH) that binds soil particles together, leading to early strength gain, pozzolanic reactions cause increased shear strength and decreased soil compressibility. Finally, some recommendations are included in this article to understand the behavior of cement columns in improving soil and avoiding problems

Article
Evaluate the granite waste efficiency in the construction using statistical indicators

Mohammad Tahir, Mohammed Yaseen

Pages: 66-72

PDF Full Text
Abstract

Due to the expansion of industrial operations globally in recent years, waste output has risen. So these wastes must be reduced by recycling and reusing to achieve environmentally friendly buildings and find various alternative materials in critical cases. The statistical indicators are used as practical study including Multiple linear regression (MLR) and artificial neural network (ANN) models. The study's goals were to assess the effectiveness of granite waste (GW) as a replacement for cement, sand, plastic, and binder in specific building applications and the relationships between MLR and ANN approaches. Results show the efficiency of adding granite waste to some construction stages and replacing it with cement in the mixture and examining its strength, it gave excellent results in addition to good results for its use as a binder in cement mortar, while the results were weak when used as a substitute for sand and plastic in insulator because it's classified as fine sand, Therefore, it cannot be used as a substitute for sand in the construction. The statistical models give an effective indicator to use GW as an alternative material ( binder and cement) based on the coefficient of correlation (R2) for the two models MLR and ANN equal to 83.4 % and 80 % respectively.

Article
Study of the Performance Thermal Forced Unglazed Solar Air Collector

Amir Jameel Shareef

Pages: 311-332

PDF Full Text
Abstract

An experimental study is achieved to study the thermal performance of forced unglazed solar air collector supplied with perforated absorber flat plate. The study is carried under Iraqi circumferences in Al-Ramadi city .The collector is inclined (90o) on horizontal for the simplicity of setting such type of collector on the wall building and minimize its weight. The measurement is recorded on Winter season for two sunny days and two cloudy days in (January 2012). The results show that its possible to use this type of collectors for heating in Winter time because the maximum out air temperature reach to (34oC) when ambient air temperature at (17oC) in sunny days. A good agreement is shown with the published studies Finally its obtained a good effectiveness for perforated flat plate absorber with high system efficiency.

Article
A Review in Applications of Control Engineering Based on Genetic Algorithm

yasameen najm

Pages: 42-48

PDF Full Text
Abstract

The most popular evolutionary search techniques are genetic algorithms (GAs). Even though they are frequently used to solve control engineering problems, they are currently not a common tool in the control engineer's toolbox. This may be due in part to the fact that there are currently few general overviews of the employment of GAs for control engineering problems, and that they are often reported on at computer science conferences rather than conferences for control engineers. This review study is intended to assist researchers and practitioners in identifying prospective research issues, potential solutions, as well as advantages and disadvantages of each technique. This study gives a brief overview of contemporary a Genetic Algorithm (GA) in control systems. Additionally, offers a number of control techniques used with the GA that have undergone extensive research. The conclusion of this study listed in a table to show the effectiveness of GA in various control technique and which field didn’t used till the time of preparing this review.

Article
A Review for Faults Recognition in Analog Electronic Circuits Based on a Direct Tester Board

Elaf Yahia, Hamid Alsanad, Hamzah Mahmood, Ali Ahmed, Yousif Al Mashhadany

Pages: 61-82

PDF Full Text
Abstract

The detection of faults in electronic circuits is crucial to ensure the proper performance and reliability of electronic applications that utilize these devices. This work discovers, for the first time, that a direct tester board for fault diagnosis can be used not only for the intended measurement of current and voltage but also for studying the potential development of these magnitudes in inaccessible locations, as it detects register transfer level signals through oscilloscopes with low acquisition speeds. The experimental analysis carried out combines the use of commercial software with spatial distribution tracking and the exploitation of the sizes of network links in their computer graphical representation. The proper detection of malfunctions in electronic systems is crucial for enhancing their performance and reliability. We intend to explore the troubleshooting of analog electronic systems, for which we use wide-band direct tester boards. To evaluate its performance in routine practice, we perform experimentation using two different analog circuits designed. They consist of conventional operational amplifiers and element modeling based on equivalent resistance-capacitance networks. Given the procedure followed, commercial programs were used. Special mention should be made of the conclusion matrix, which is interesting when selecting suitable diagnostic parameters. The effectiveness of direct measurement based on integrated probes in the two projects, which allowed for fault insertion, was also confirmed. The results and discussions were enriched by the summarized experimental test report.  The work concludes with a reflection on the relationship between this work and the existing state of the art, as well as the new challenges posed by international researchers.

Article
Enhancing the effectiveness of the cooling system for automotive engine by employing different nanofluids: literature review

Israa Abdulghafor

Pages: 53-58

PDF Full Text
Abstract

The cooling system of a car engine effects strongly the efficiency of the car engine so many studies were presented to enhance the cooling system of the car. The components of the cooling system are radiator, water pumps, fan, shutters, thermostats, expansion tanks/storage tanks, water pipes, water temperature gauges, etc. Among these components,  the radiator considers the primary key to enhancing the efficiency of the car engine. Many studies were achieved to enhance the efficiency of car radiators by using different nanofluids as a coolant are discussed in this literature review study. These previous studies investigated various kinds of nanofluids such as Al2O3, CuO, TiO2, SiO2, and ZnO with different base fluids.  Nanofluid concentrations,  nanofluid temperature, and nanofluid flow rate were studied by previous studies eleven years ago.       

Article
Construction Methods and Their Impact on the Productivity of the Construction Projects Site (Iraq Case Study)

Mohammed Malallah

Pages: 48-60

PDF Full Text
Abstract

This study aims to investigate the impact of various construction methods on labor productivity in Iraq, focusing on traditional, prefabricated steel structures, precast concrete, and mechanical or self-build construction techniques. The research employs a descriptive-analytical methodology, utilizing a structured survey distributed to 200 participants from different construction industry sectors, including engineers, contractors, and field workers. The survey examines key indicators of labor productivity, such as task completion speed, work quality, labor costs, safety, and project cost.The findings reveal significant differences in labor productivity across the construction methods. Traditional construction methods moderately impacted task completion speed and work quality but were less efficient in terms of cost reduction and safety. On the other hand, prefabricated and precast concrete methods demonstrated improvements in work quality, safety, and cost efficiency, although with some limitations regarding flexibility. Steel structures offered enhanced durability and faster construction times, while mechanical and self-build methods utilizing automation significantly reduced labor costs and accelerated the construction process.Based on these results, the study recommends incorporating modern construction methods, such as prefabricated and mechanical techniques, to improve overall productivity in the Iraqi construction sector. Additionally, it emphasizes the importance of training and adapting to these advanced methods to ensure long-term efficiency, safety, and cost-effectiveness in construction projects.

Article
Improvement of Convective Heat Transfer through Ultrasound Application: A Review

Ayam Flaih, Hussein Abdali, Emad Hussein, Thiago Santos

Pages: 36-47

PDF Full Text
Abstract

Enhancing heat transfer, particularly through convection, is crucial in various industrial applications, driving ongoing interest in methods to improve heat transfer rates and the efficiency of heat transfer equipment. Ultrasound has emerged as an effective and reliable method for boosting convective heat transfer, primarily due to the unique phenomena it creates within irradiated fluids, such as sound cavitation and streaming. In heat exchanges, where forced heat convection is typically the primary technique, ultrasound has shown notable effectiveness by improving convective heat transfer and reducing fouling. This paper summarizes recent research on the application of ultrasound in both forced and free convection heat transfer systems, emphasizing studies published in the past decade. Previous research has demonstrated that the influence of ultrasound on heat transfer varies significantly between laminar and turbulent flows, necessitating thoughtful consideration in system design. While progress has been made, gaps remain in understanding the influence of flow rates across systems and the thermal enhancement provided by ultrasound in gaseous systems. Furthermore, most research is conducted in experimental settings, highlighting the need for increased studies to support industrial applications.

Article
Experimental study on thermal performance of counter flow wet cooling tower and effect of fins angle

Mr Hindren Ali Saber, Iyd Eqqab Maree

Pages: 1-8

PDF Full Text
Abstract

The aim of this paper is to in investigate the performance characteristics of counter flow wet cooling towers experimentally by varying air and water temperatures, fins angle, rate of air flow, rate of water flow as well as the evaporation heat transfer, along the height of the tower. The analysis of the theoretical results revealed before that the thermal performance of the cooling tower is sensitive to the degree of saturation of inlet air. Hence, the cooling capacity of the cooling tower increases with decreasing inlet air temperature whereas the overall water temperature fall is curtailed with increasing water to air mass ratio. From the experimental study the efficiency of the cooling tower and cooling tower characteristics are higher in case of low mass flow ratio due to higher contact area of water to air. Because of better contact area between airs to water the drop in performance of the cooling tower is less. The effect of fins angle on the thermal performance of counter flow wet cooling tower was predicted. The experimental study showed that the cooling range, cooling coefficient, , heat load , change in air relative humidity and cooling tower effectiveness increased with increasing fins angles and optimum fins angle obtained from this experimental work was 70 degree, at this angle all cooling tower performance has been calculated were better. While the approach increased with decreasing fins angles, the minimum approach was obtained for 70 degree fins angles and the maximum approach was obtained for 30 degree fins angles.

1 - 14 of 14 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.