Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for environmental-conditions

Article
Effect of Some Environmental Conditions on Durability of Clayey Soil Stabilized by Waste Lime

Ibrahaim M. Al-Kiki

Pages: 69-78

PDF Full Text
Abstract

This investigation was conducted to assess the efficacy of some environmental conditions of soil specimens stabilized with optimum waste lime content 6%. These conditions are represented by cycles of (wetting-drying-freezing), (wetting-freezing-drying), (drying-wetting-freezing), (drying-freezing-wetting), (freezing-wetting-drying) and (freezing-drying-wetting). The soil specimens were subjected to these conditions, the durability of these specimens is study by knowledge the change in unconfined compressive strength, volume change and loss in weight. The results indicated that the unconfined compressive strength decreases with cycles for all conditions, but for different percentages according to the type condition. Where the condition more effect that starting freezing-drying-wetting. Also the results show that the specimens subjected to cycles of (freezing-drying-wetting) and (wetting-freezing-drying) destroyed at the end of eight cycle, but the specimens were subjected to other conditions destroyed at the end of tenth cycle. The results show that the maximum loss in weight for specimens subjected to cycles starting wetting-freezing-drying, and the maximum value of volume change for cycles starting freezing-drying-wetting. Finally these condition are regarded very severe conditions and effect on durability of soil stabilized.

Article
A Comprehensive Review of Hybrid Photovoltaic-Thermoelectric Systems for Enhanced Solar Energy Utilization

Huseen Yousif, Saad Jalil

Pages: 46-61

PDF Full Text
Abstract

These systems show great promise by converting waste heat from photovoltaic modules into additional electrical power. The study analyzes the performance and efficiency of the hybrid PV-TEG systems under varying conditions, such as different solar concentration ratios, cooling methods, and materials. While these innovations promise to improve system efficiency, the review also identifies several challenges, including increased thermal resistance, higher system costs, and the minimal temperature difference across the TEG, which significantly limits its performance. This limitation, where the temperature differential is often too small to be effectively harnessed, reduces the TEG's overall efficiency and hinders the integrated system's potential gains. The review underscores the need for urgent and extensive research to develop optimized design configurations, durable mathematical models, and further experimental validation to ensure the practical viability of these systems under diverse environmental conditions. Despite these challenges, the potential of PV-TEG systems to revolutionize solar energy technologies is undeniable.PV-TEG performance is intricately linked to environmental conditions: higher solar radiation boosts efficiency, but increased ambient temperatures reduce it. TEGs often hinder PV cooling, yielding minimal efficiency gains. Non-uniform heat and low-temperature differences across TEGs further decrease performance. While hybrids can improve power conversion, high costs limit feasibility. However, with strategies such as enhancing solar concentration, using effective cooling methods like water or nanofluids, and advanced materials like phase change materials, the efficiency and reliability of these systems can be significantly improved

Article
Using water treatment sludge to Improve Geotechnical Engineering Properties of Soils: A Review

Mohammed Hamid, Khalid Aljanabi, Ayad Mustafa

Pages: 50-65

PDF Full Text
Abstract

Water treatment sludge (WTS) is a byproduct generated during the treatment of wastewater. In recent years, researchers have explored the potential of using WTS as a soil stabilizer to improve the geotechnical properties of soils. In this review, we will examine the current state of knowledge on the use of WTS for this purpose. The organic matter content of WTS is usually high and can range from 30% to 60%. The high organic matter content makes WTS a potential source of nutrients for plants, and it can also enhance soil structure and water retention. Another important consideration is the environmental impact of using WTS. The use of WTS can be an eco-friendly alternative to chemical stabilizers, which can have adverse effects on the environment. However, there are concerns about the potential for heavy metal contamination in WTS. To mitigate this risk, it is recommended to conduct thorough testing of WTS before using it as a soil stabilizer. Finally, the use of WTS as a soil stabilizer has the potential to improve the geotechnical properties of soils. However, it is essential to consider factors such as the type and dosage of WTS, the soil type, and the environmental impact before using it. Further research is also needed to explore the potential of using WTS in different soil types and environmental conditions.

Article
Investigation of human thermal comfort and improvement in public places adapted to a hot climate in Iraq

Ahmed Ali Najeeb Alashaab, Mohammed Saeed Alamery

Pages: 349-361

PDF Full Text
Abstract

This study focuses on improving the thermal comfort in Mosques in Iraq. Omar bin Abdul Aziz Mosque in Baghdad is taken as a case study. In general, the weather in Baghdad is hot- dry climate during the summer. the study was conducted at the time of noon prayer on Friday where the maximum number of people can be obtained inside the Mosque about 500 worshipers and severe environmental conditions. Numerical methods (CFD) are used for the simulation utilizing the package of ANSYS (FLUENT V. 18). As the results depending on the number of elements, 4 millions elements are used for dividing the physical domain. Thermal comfort was assessed by finding the values of the predicted mean vote (PMV), predicted percentage of dissatisfied (PPD), and ASHRAE standard-55. The adaptive redistribution of the air conditioning device strategy at five cases is used to obtain the best thermal comfort. Moreover, changing the angle of air intake of space by changing the angle inclination of the access blade at three different angles of 0o, 7.5o and 15o degree, and studying its effect on the thermal comfort in breathing level. The four case is the best in terms of thermal comfort when the angle of intake air at 0o.when the PMV was 0.35 and PPD is 7.5, which is lower than the original state. The improving percentage of PPD is 10 % and PMV 14 %.

Article
An Experimental Study Of A Solar Water Heater Of Prismatic Right Triangular Cross-Section Area

Abdul Rahman M. Homadi, sabah T. Ahmed

Pages: 94-111

PDF Full Text
Abstract

An experimental study was done on a solar water heater which consists of two prisms of orthogonal triangle cross-section with a 210 liters capacity . The heater was easy to make and has a low cost when comparted with other types of solar water heaters that it usually the collector separate on the water store. The study included experimental investigations , the experimental investigation was done under the Iraqi environmental conditions at Baghdad for the period in summer and winter seasons in 2006 but the calculation for only two days 15/7/2006 and 6/12/2006 . The study included testing the heater with & without loading and it tested in 13/12/2006and14/12/2006. draining hot water from storage tank at different rates . The experimental result show the ability to get hot water at 46oC at December i.e. a temperature rise at 30oC with 16oC initial temperature .

1 - 5 of 5 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.