Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for impact-strength

Article
Characterization of Rotary Friction Welded AISI 304 Steel Joints

Jwan Khalil Mohammed, Ramadan H. Gardi, Dlair O. Ramadan

Pages: 202-210

PDF Full Text
Abstract

Friction welding method is one of the most efficient and effective techniques for joining similar and dissimilar materials. The AISI 304 austenitic stainless-steel is a most common type of austenitic stainless steel which is used in various practical applications like automotive, food manufacturing, chemical applications, etc. Therefore, the impact strength and microstructure behavior of friction welded AISI 304 austenitic stainless-steel joints were investigated. The specimens were divided into two groups, the surface of the first group was flat while the interface of the second group was designed by fabricating a pin and hole. The effect of different forging pressure (192.4, 240.5, 288.6 and 384.8 MPa) on impact toughness and microstructure behavior of AISI 304 were examined using Charpy impact tester and optical microscope, respectively. The minimum impact strength was observed at 240.5 MPa for flat interface samples whereas, the maximum impact strength value (0.5675 J/mm2) was at 388.6 MPa forging pressure for pin interface samples. In addition, the ductile mode in pin type for all cases while both, brittle and ductile mode in the flat joint was noticed. Finally, it was concluded that the impact strength improved with designing a pin and hole shape at the joint interface.

Article
Effect of water on impact strength for unsaturated polyester composites reinforced with E-glass fibers

Mohammed Ghazi Hammed

Pages: 279-294

PDF Full Text
Abstract

The present research aimed to study the effect of distilled water on impact strength for unsaturated polyester composites reinforced with E-glass fibers with volume fraction 35%, all samples were prepared by using hand lay up technique. Unsaturated polyester resin was used as matrix for the reinforced materials that consist of artificial glass fibers (woven roving) with directional (0,90) and chopped glass fibers with the random direction. The samples were cutting with measurement (60 x 6) mm and the sample thickness dependent on the number of layers of glass fibers. The impact tests are carried out on samples under the influence of normal conditions (laboratory temperature). The results and examinations for these samples shows acceptable improvement in impact strengths of the matrix was observed after addition of glass fibers, to explain the effect of water on impact properties, the samples immersion in water for (50) days. The results show that as the exposure time increased the impact strength of samples increase.

Article
Polymer Modified Polystyrene Concrete

Yousif Khalaf Yousif

Pages: 80-93

PDF Full Text
Abstract

This research work includes production of polymer modified polystyrene concrete and studies the mechanical properties. Several proportions of raw materials were used to produce this type of concrete. This study is intended to improve the mechanical properties of light weight polystyrene concrete using styrene butadiene rubber(SBR) with rate of (5,10,15and20)% of cement weight. Compressive strength, flexural strength, impact strength and dry density tests were made on more than 150 specimen at age of 28 days. The results show that the addition of (SBR) with range of (5-20)%of cement weight is improve the flexural strength with range (3.74-18)%, and improve the impact strength with range (39-163)%. Also the results show that it is possible to produce polystyrene concrete with density (1680,1433 and 1147) kg/m3 replacing light weight Polystyrene aggregate with volume fraction (30,50 and70)%of sand.

Article
Properties of Sustainable Self- compacting Concrete Containing Treated and Modified Waste Plastic Fibers

Asmaa Hussien, Mahmoud Mohammed

Pages: 23-34

PDF Full Text
Abstract

This study aims to improve different properties of sustainable self-compacting concrete SCC containing treated and modified polyethylene terephthalate PET fibers. For this purpose, gamma ray surface treatment and geometric modification were utilized for the used PET fibers. Concrete fresh properties include slump flow, T500mm, L-box and sieve segregation while mechanical properties include compressive, split tensile strength, flexural strength, static modulus of elasticity and impact strength. Further, physical properties and related durability properties comprise dry density, ultrasonic pulse velocity, porosity and water absorption. The results obtained demonstrated that the treatment and the modification used for the PET fibers slightly reduced the fresh properties of produced sustainable SCC (slump flow, T500 mm, L-Box and sieve segregation). However, they were within the limits of the SCC specification as reported in EFNERC guidelines. Further, concrete hardened properties in terms of compressive strength, splitting tensile strength, flexural strength, modulus of elasticity, impact strength, ultrasonic pulse velocity, decrease in the dry density, decrease in porosity and water absorption increased significantly.

Article
Preparation a Composite Material (UP/Cann F) with Evaluation Its Toughness Under the Influence of Temperature and Humidity.

Nasser A.M. Habib

Pages: 198-208

PDF Full Text
Abstract

In this research we have prepared a composite material by using Vegetative Cellulose Fibers of Cannabis (Cann F) to reinforced a matrix of Unsaturated Polyester (UP) resin. This kind of fibers is distinguished by good properties such as high tensile strength, low elongation, thermal resistance and low cost. The impact strength was tested by using Charpy method for three materials (UP resin), composite (UP / Cann F) and composite (UP/Glass F). The results indicated that the fracture energy (Uc) decreased as the notch depth (a) increased on the sample from (0.7 mm) up to (4.9 mm). However, the fracture energy increased as the temperature of the composite increased for different temperatures of (0, 35, 50 and 75) oC. It was noticed that the Material toughness (Gc) has been improved significantly, where in case of the composite (UP /Cann F), the improvement of (Gc) was from (2.45 kJ/m2 ) to (14.5 kJ/m2 ) and it was (17 kJ/m2 ) for composite (UP/GF) has been measured at (35) oC. When those composite materials (UP/Cann F) exposed to humidity for a period of (72 hrs) without immersion, their properties did not change, hence the effects are not of chemical but of physical nature. The conclusion, the difference between the toughness of the material (Gc) for the reinforced composites by Cannabis and E-glass fibers for all temperatures is not large, so this encourage the development of Cannabis fiber reinforced composites in the future to abundance, and low cost for industrial investment

Article
Effect of Some Environmental Factors on the Properties of Polyurethane/Silica Composites

Hazim falih

Pages: 30-35

PDF Full Text
Abstract

Silica particles are directly introduced into polyurethane resin with different grain size and different volume fractions to obtain a new composite. Hardness, impact strength (charpy) and compression properties were studied with the conditions mentioned; Acid solutions and UV- radiation were the main environments studied on the samples prepared. The results showed that the acid affected the properties more than UV- radiation

1 - 6 of 6 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.