Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for solar-energy

Article
Design and Analysis of High Performance Home Solar Energy System.

Yousif I. Al-Mashhadany

Pages: 280-295

PDF Full Text
Abstract

Rising energy prices and growing environmental concerns are making solar electric systems more attractive to homeowners. A solar electric system reduces high energy costs and keeps your home up and running during power out-ages. The advantages to buying a solar electric system include: Saving a significant amount on your electric bill. Increasing your home’s appraisal value. Enjoying reliable, clean, free power for 25 to 30 years. Helping and assist to boost our economy by creating jobs and new solar companies. A solar electric system is typically made up of solar panels, an inverter, battery, charge controller, wiring, and support structure. The three most common types of solar electric systems are grid-connected, grid-connected with battery backup, and off-grid (stand-alone). This work presents design and analysis of high performance of home solar energy, that include: the orientation and pitch of the south‌ernmost facing roof to maximize solar gain, the roof vents, chimneys, gables or other obstructions in order to sit to the north side of the planned array. Ensure that the roof structure is strong enough. Structural support into the roof to handle the weight of a rack-mounted system. The space for inverters and disconnects near the main service panel. Finally comparison between these systems with other sources of energy.

Article
A Comprehensive Review of Hybrid Photovoltaic-Thermoelectric Systems for Enhanced Solar Energy Utilization

Huseen Yousif, Saad Jalil

Pages: 46-61

PDF Full Text
Abstract

These systems show great promise by converting waste heat from photovoltaic modules into additional electrical power. The study analyzes the performance and efficiency of the hybrid PV-TEG systems under varying conditions, such as different solar concentration ratios, cooling methods, and materials. While these innovations promise to improve system efficiency, the review also identifies several challenges, including increased thermal resistance, higher system costs, and the minimal temperature difference across the TEG, which significantly limits its performance. This limitation, where the temperature differential is often too small to be effectively harnessed, reduces the TEG's overall efficiency and hinders the integrated system's potential gains. The review underscores the need for urgent and extensive research to develop optimized design configurations, durable mathematical models, and further experimental validation to ensure the practical viability of these systems under diverse environmental conditions. Despite these challenges, the potential of PV-TEG systems to revolutionize solar energy technologies is undeniable.PV-TEG performance is intricately linked to environmental conditions: higher solar radiation boosts efficiency, but increased ambient temperatures reduce it. TEGs often hinder PV cooling, yielding minimal efficiency gains. Non-uniform heat and low-temperature differences across TEGs further decrease performance. While hybrids can improve power conversion, high costs limit feasibility. However, with strategies such as enhancing solar concentration, using effective cooling methods like water or nanofluids, and advanced materials like phase change materials, the efficiency and reliability of these systems can be significantly improved

Article
The effect of a controlled cooling system on the solar array of DC air conditioner

Hashim Hussein, Ali Numan, krar kuder

Pages: 113-120

PDF Full Text
Abstract

The present research is devoted to solve the problem of high energy consumption by air conditioners in summer. In order to eliminate domestic electricity for cooling purposes and rely directly on solar energy isolated from the grid connection and increases the performance of the solar panel by using front water spray cooling system for the panel, and by using Adruino as controller to control the cooling system. The experimental system setup arranged in Iraq at Al-taje site during the summer season at a room. The proposed system consists of an array of photovoltaic, battery used to store power, PWM charge controller, and DC air cooler, Adruino. During the examination of the system, The enhancement of the solar panel has a positive effect on long-term batteries and improves the battery life by which the charge and discharge when combined with a direct photovoltaic air conditioning system without refrigeration. Excess power generated from the PV panels is storage in the batteries, which make the system is the most familiar with Iraq's summer conditions

Article
An Experimental Study Of A Solar Water Heater Of Prismatic Right Triangular Cross-Section Area

Abdul Rahman M. Homadi, sabah T. Ahmed

Pages: 94-111

PDF Full Text
Abstract

An experimental study was done on a solar water heater which consists of two prisms of orthogonal triangle cross-section with a 210 liters capacity . The heater was easy to make and has a low cost when comparted with other types of solar water heaters that it usually the collector separate on the water store. The study included experimental investigations , the experimental investigation was done under the Iraqi environmental conditions at Baghdad for the period in summer and winter seasons in 2006 but the calculation for only two days 15/7/2006 and 6/12/2006 . The study included testing the heater with & without loading and it tested in 13/12/2006and14/12/2006. draining hot water from storage tank at different rates . The experimental result show the ability to get hot water at 46oC at December i.e. a temperature rise at 30oC with 16oC initial temperature .

Article
Prediction of Thermal Characteristics For Solar Water Heater

Mohamaad A. Fayath, Saad T. Hamidi

Pages: 18-32

PDF Full Text
Abstract

The research studies the prediction of thermal characteristics for open designer shape of solar collector of flat plate of area 2.34m2, connected to water tank of 85 liter capacity . Mathematical model was represented and made the system of private accounts, transactions and through the creation of mathematical equations and solved numerically using the method of Finite Difference Method (FDM).The results of research is to obtain hot water at average temperatures up to 520C at mid-day during February month, as the water temperature is at its lowest value in this month in Baghdad city, with an average efficiency of the system up to 53.6% .This predictive study is compared with a previous measurement work and confirmed that the results match well.

Article
In-Depth Review For Evaluating Power Usage of Solar Cells Over Their Entire Lifespan

Alaa Rawdhan, Mohammed Ahmed

Pages: 18-28

PDF Full Text
Abstract

Solar cells play a vital role in renewable energy systems, and ongoing research is dedicated to enhancing their power efficiency and longevity. Advancements in perovskite solar cells, particularly in power conversion efficiency (PCE), have shown significant progress, confirming its viability as a technology. Perovskite solar cells have achieved power conversion efficiency (PCE) levels of up to 25.5%, comparable to conventional photovoltaic technologies like silicon, gallium arsenide, and cadmium telluride. The substantial enhancement in power conversion efficiency figures over the last decade has shown a remarkable advancement in the efficiency of perovskite solar cells. This study examines the trajectory of perovskite solar cells in becoming economically feasible and generally embraced as a critical renewable energy technology. The advancement of flexible and wearable solar cells, together with miniature solar-powered sensors, has increased the efficiency of solar cell power production. Perovskite solar cells have shown a specific power of 23 W/g, much higher than traditional silicon or gallium arsenide solar cells. Further research is needed to address the challenges related to perovskite solar cells' stability and power conversion efficiency. Perovskite solar cells integrated with energy storage units have the potential to enhance the overall efficiency of the system. This study discusses an approach to improve the efficiency of novel solar cells, specifically focusing on lead-free tin-based perovskite solar cells and tandem solar cells. The advancement of technology in thin films, such as hybrid nanocomposite thin films and quantum dot-sensitive solar cells, has the potential to improve the efficiency of solar cells. The primary outcome of this study is derived from the following inference: incorporating plasmatic nanostructures into thermal energy systems will enhance their efficiency and sustainability by integrating solar energy.

1 - 6 of 6 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.