In this current experimental research, the amount of improvement in the thermal conductivity of HEC hybrid epoxy resins was studied by adding copper oxide nanoparticles CuONp and carbon nanotubes (CNTs) as hybrid additives in different proportions to select the sample with the highest thermal conductivity value to include it in the design of the Flat Plate Solar Collector FPSC as Thermal Interface Material TIM reduces thermal resistance between the absorber plate and the tube. Four groups of samples were prepared using a mass balance with a sensitivity of 0.01g and a magnetic mixing device, then poured into cubic plastic molds to take the shape of the sample. The first group consists of one sample of pure epoxy to calibrate the thermal properties testing device through it. The second group consists of five samples of epoxy loaded with CNTs by weight (1, 3, 5, 7.5, 10) %. The third group consists of five samples of epoxy loaded with CuONp with weight percentages of (1, 3, 5, 7.5, 10) %. The fourth group consists of five samples of epoxy loaded with CuONp and CNTs combined in weight percentages of (1, 3, 5, 7.5, 10) %. The thermal conductivity of the samples was measured experimentally using the hot disk analyzer technique to measure thermal specifications. After comparing the thermal conductivity values of the samples, the highest value was 1.57 W/mK for the HEC sample loaded with 10% CNTs, which represents 9.23 times higher than pure epoxy
The thermal and acoustic isolation properties of unsaturated polyester composites reinforced by palm waste filler have been experimentally investigated. The composites have been prepared using hand lay-up technique with filler weight fraction of (0%, 3%, 5% and 7%). Three types of palm waste that (Date seed, old leaf bases and petiole) were ground and sieved separately to produce the filler with particle size ≤ 400µm. Thermal conductivity, thermal diffusivity, and specific heat capacity were examined using Hot Disk thermal analyses. The acoustic isolation property examined in a sound-insulated box. The experimental results show that the thermal conductivity and thermal diffusivity of the composite specimens reinforced by seed or old leaf bases filler increased with increasing the fillers weight fraction. While increasing the petiole filler decreased the thermal conductivity and thermal diffusivity by 19% and 40% respectively at 5% weight fraction as compared with a pure unsaturated polyester material. So, the composite reinforced with petiole filler has improved the thermal insulation properties. The composites samples reinforced with palm waste show higher sound absorption in compared to the pure unsaturated polyester material. The sound absorption properties of composite reinforced with 7% old leaf bases filler improved by 15% and 23% at low and high frequency respectively rather than of pure unsaturated polyester material.
In the current article, an experimental investigation has been implemented of flow and heat transfer characteristics in a parabolic trough solar collector (PTSC) using both nano-fluids and artificial neural networks modeling. Water was used as a standard working fluid in order to compare with two different types of nano-fluid namely, nano-CuO /H2O and nano-TiO2/ H2O, both with a volume concentration of 0.02. The performance of the PTSC system was eval-uated using three main indicators: outlet water temperature, useful energy and thermal efficiency under the influence of mass flowrate ranging from 30 to 80 Lt/hr. In parallel, an artificial neural network (ANN) has been proposed to predict the thermal efficiency of PTSC depending on the experimental re-sults. An Artificial Neural Network (ANN) model consists of four inputs, one output parameter and two hidden layers, two neural network models (4-2-2-1) and (4-9-9-1) were built. The experimental results show that CuO/ H2O and TiO2/H2O have higher thermal performance than water. Overall, it was veri-fied that the maximum increase in thermal efficiency of TiO2/H2O and CuO/H2O compared to water was 7.12% and 19.2%, respectively. On the oth-er hand, the results of the model 4-9-9-1 of ANN provide a higher reliability and accuracy for predicting the Thermal efficiency than the model 4-2-2-1. The results revealed that the agreement in the thermal efficiency between the ANN analysis and the experimental results about of 91% and RMSE 3.951 for 4-9-9-1 and 86% and RMSE 5.278 for 4-2-21.
In The present work, a thermal analysis of two different chimneys by studying the effect of the flue gases on the chimney shell structure was presented. A computer program was constructing using Fortran language to estimate the thermal stresses that: radial, circumferential and longitudinal thermal stresses which will induced as a result of thermal gradient across the chimney wall structure. The results show, the radial thermal stresses has the minimum value at the middle of the concrete layer in the unlined chimney. The circumferential and longitudinal thermal stresses are transferred from the negative value to the positive value. The maximum value of stresses is found in the inner surface negative value and on the outer surface positive value of the chimney.
Switched reluctance motor (SRM) is an electric motor works based on the reluctance torque produced due to the variation of the rotor pole position with respect to stator poles. This paper adopts a thermal analysis on a 4-phase, 8/6 pole, 550W, SRM. Lumped parameters thermal network method(LPTN) is used in this analysis based on a combination of RMXprt/Motor-CAD software, in two- dimensional(2D), steady-state, with different cooling methods, and with different loading conditions. Motor losses like core losses, copper losses, and mechanical losses are regarded as the heat sources in SRM which are calculated by RMXprt software. The thermal analysis achieved by Motor-CAD includes displaying the temperature distribution on different motor parts like stator winding, stator poles, stator yoke, rotor poles, rotor yoke, shaft, covers, and housing. The analysis results showed the increasing temperature distribution on different motor parts with increasing motor loading conditions. Also, this temperature distribution is recorded using three different cooling methods. The comprehensive thermal analysis applied in this work will assist the motor designer in choosing a better motor thermal design without needing to produce and test costly prototype motors.
This study focuses on improving the thermal comfort in Mosques in Iraq. Omar bin Abdul Aziz Mosque in Baghdad is taken as a case study. In general, the weather in Baghdad is hot- dry climate during the summer. the study was conducted at the time of noon prayer on Friday where the maximum number of people can be obtained inside the Mosque about 500 worshipers and severe environmental conditions. Numerical methods (CFD) are used for the simulation utilizing the package of ANSYS (FLUENT V. 18). As the results depending on the number of elements, 4 millions elements are used for dividing the physical domain. Thermal comfort was assessed by finding the values of the predicted mean vote (PMV), predicted percentage of dissatisfied (PPD), and ASHRAE standard-55. The adaptive redistribution of the air conditioning device strategy at five cases is used to obtain the best thermal comfort. Moreover, changing the angle of air intake of space by changing the angle inclination of the access blade at three different angles of 0o, 7.5o and 15o degree, and studying its effect on the thermal comfort in breathing level. The four case is the best in terms of thermal comfort when the angle of intake air at 0o.when the PMV was 0.35 and PPD is 7.5, which is lower than the original state. The improving percentage of PPD is 10 % and PMV 14 %.
A solar water heating system has been fabricated and tested to analyze the thermal performance of Parabolic Trough Solar Collector (PTSC) using twisted tape insert inside absorber tube with twisted ratio about TR=y/w=1.33. The performance of PTSC system was evaluated by using three main important indicators: water outlet temperature (Tout), useful energy and thermal efficiency (ηth) under the effect of mass flow rate (ṁ) ranges between 0.02 and 0.04 Kg/s with the corresponding of Reynolds number (Re) range (2000 to 4000). In a parallel, a fuzzy-logic model was proposed to predict the thermal efficiency (ηth) and Nusselt number (Nu) of PTSC depending on the experimental results. The fuzzy model consists of five input and two output parameters. The input parameters include: solar intensity (I), receiver temperature (Tr), water inlet temperature (Tin), water outlet temperature (Tout) and water mass flow ( ) while, the output include the thermal efficiency (ηth) and Nu. The final results indicate that, owing to the mixture of the swirling flow of the perforated twisted-tape insert, the perforated twist tape insert enhances the heat transfer characteristics and the thermal efficiency of the PTSC system. More specifically, the use of perforate twist tape inserts enhanced the thermal efficiency by 4% to 4.5% higher than smooth absorber tube. Also, the predicted values were found to be in close agreement with the experimental counterparts with accuracy of ~92 %. So, the suggested Fuzzy model system would have high validity and precision in forecasting the success of a PTSC system compared to that of the traditional model. Pace, versatility, and the use of expert knowledge for estimation relative to those of the traditional model are the advantages of this approach
An experimental and theoretical study has been conducted to determine the thermal efficiency of a parabolic trough solar collector. The experiments have been performed during winter and summer at Tikrit-Iraq. The solar radiation of Tikrit University was calculated theoretically and a theoretical study was performed by using FORTRAN 90 program. The dimensions and specifications of the collector were entered to the program to determine the theoretical thermal efficiency. It has been found the experimental thermal efficiency of collector is less than the theoretical one in percentage between (7-15) .So the increase in water mass flow rate leads to an increase in the thermal efficiency, and there is no significant change in thermal efficiency when the water mass flow rate becomes more than forty kilograms per hour.
This paper deals with the transient interlaminar thermal stress analysis of angle-ply SIC/LAS composite cantilever plate due to sudden change in the thermal boundary conditions .The transient interlaminar thermal stresses are computed by using the finite element method for different intervals of time. The effects of the fiber volume fraction, fiber orientation angle and stacking sequence are studied. The results are compared with previous studies with a good agreement
The present study was concerned with the analysis, simulation of the air flow pat-terns and thermal comfort levels in the University of Anbar at conferences hall (Ibn Al Haitham hall). The study was performed in a hot - dry season. The pur-pose of the present work was to investigate the level of thermal comfort and the influence of the air flow on the flow patterns at the conferences hall. It has been assumed that the total number of occupying audiences in the hall was approxi-mately 100 persons. The present work simulated and analyzed four hypothetical cases, namely: in the first case, the hall was assumed as an empty place, whereas the other three cases were performed by redistribution for the three units of air conditioning, the hall was assumed as a filled place with persons in September 2019. The study was accomplished using simulation techniques, a CFD code (FLUENT 6.2) v.17, which is commercially available. The CFD modelling tech-niques were applied to solve the continuity, momentum and the energy conserva-tion equations in addition to the Turbulence k-є (RNG) model equations for a tur-bulence closure model. Thermal comfort was assessed by finding the values of predicted mean vote (PMV), predicted percentage of dissatisfied (PPD), and ASHRAE standard-55. In conclusion, the second case was the superior in compar-ison to these other cases. It was noted that the PMV value was 0.17, whereas the PPD value was 6.79 at the breathing level.
The Organo modified and unmodified sodium montmorillonite clay effect on thermal and mechanical properties of the waste low density polyethylene (wLDPE) were studied. Commercialize unmodified (MMT) and Organo-modified clay (OMMT) were added to the wLDPE to prepare wLDPE-clay noncomposites by melt intercalation method. OMMT and MMT were added in a range of 1-5 wt %. Fourier transform infrared spectroscopy (FTIR) used to evaluate polymer structure before and after the fabrication. Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) were used to analyse the thermal stability and thermal properties for the wLDPE and fabricated nanocomposites. Tensile mechanical characteristics of the waste specimens before and after nanocompsite fabrication were evaluated. The FTIR exhibited no change in the chemical structure of the wLDPE used after clay addition. Melting temperature and crystallization percentage were increased up to 1 wt% loaded and decreased in with clay content increasing when compared to the original waste matrix. The thermal steadiness of the wLDPE /clay nanocomposites were found enhanced in the case of loading 3 wt% of OMMT. The elastic modulus has improved in the 3% OMMT loaded.
An experimental study is carried out to compare the thermal performance of a sintered powder metal wick heat pipe. Pure water and absolute ethanol are used as two different working fluids. The pipe is made of copper with 300 mm length, 14 mm diameter, and 1.0 mm wall thickness. The wick is made of copper powder. All the experiments are accomplished and the heat pipe is at the horizontal position (è=0o). The heat flux changed within the range (2.8 -13.13) kW/m2, while all other conditions remained constant. The results show that the thermal performance of the heat pipe is better when water is the working fluid, where the operating temperature and the thermal resistance of the heat pipe are lower when the water is the working fluid.
High performance thermal insulators industries is recognized as one of most significant industries worldwide. This, of course, due to its basic role in industries requiring elevated temperatures. Concerning this target, a former study was performed in production of a thermal insulator containing locally available kaolin taking into consideration the effect of ignition temperature and grain size on the general specifications of the insulator. The low alumina content in kaolin samples , as shown by analysis, has resulted in lowering both the softening and melting points. It is planned in this research to study the effect of soaking time and added alumina on improving physical, thermal and mechanical properties of kaolin sample. Certainly, better properties of sample will result in better performance towards thermal insulation and to be more effective in resisting elevated temperature without affecting other properties.
Since concrete is one of the most popularly utilized building mixtures in construction, a high demand of natural resources is significantly emerged. Therefore, a skyrocketed attention has been paid to create new opportunities for the use of recycle materials to develop a new construc-tion substance with more satisfactory properties. The use of waste products in concrete is not only economical, but it helps in solid waste management as well. Among various properties of concrete, thermal conductivity is a crucial factor that plays an important role in in building insu-lation by evaluating a material's capacity to transfer heat. This paper aims to review the potential application of waste materials in concrete as additive ingredients and investigate the effect of this waste material on thermal conductivity of concrete. The review of literature revealed that the application of most of the waste materials exhibited an obvious potential as thermal insulator. However, further investigated work is needed to highlight the advantages of utilizing waste mate-rials in concrete containing various type of waste materials
In this study, thermal-hydraulic performance of a confined slot jet impingement with Al2O3-water nanofluid has been numerically investigated over Reynolds number ranges of 100-1000. Two triangular ribs are mounted at a heated target wall; one rib located on the right side of the stagnation point and another one located on left side of the stagnation point. The governing momentum, continuity and energy equations in the body-fitted coordinates terms are solved using the finite volume method and determined iteratively based on SIMPLE algorithm. In this study, effects of Reynolds number, rib height and rib location on the thermal and flow characteristics have been displayed and discussed. Numerical results show an increase in the average Nusselt number and pressure drop when Reynolds number and rib height increases. In addition, the pressure drop and average Nusselt number increases with decrease the space between the stagnation point and rib. The maximum enhancement of the average Nusselt number is up to 39 % at Reynolds number of 1000, the rib height of 0.3, rib location of 2 and nanoparticles volume fraction of 4%. The best thermal-hydraulic performance of the impinging jet can be obtained when the rib height of 0.2 and rib location of 2 from the stagnation point with 4% nanoparticles volume fraction.
Numerous inserts types are employed in different heat transfer improvement application devices. In this review study is forced on various types of twisted tape inserts in heat exchanger pipe. Geometrical configurations of twisted tape for example twist direction; length, width, space, twist ratio etc. were highly effect on flow pattern, hydrodynamic flow and heat transfer performance. In this review study observed that using different types of twisted tapes can improve thermal performance and hydrodynamic as compared to smooth pipe (without twisted tape). The review investigations found that improvement of thermal performance happens owing to decrease in pipe cross area, leads to rise in mixing flow, turbulence flow intensity flow and rise in swirl flow established through different kinds of twisted tapes. This article dealt with investigations pub-lished in corrugated pipes with varying field applications to provide good information for engi-neers and designers whom dealing and concerning with improvement of heat performance in heat exchanger corrugated pipes.
In this paper, the hydraulic-thermal performance of a double-pipe heat exchanger equipped with 45°-helical ribs is numerically studied. The ribbed double-pipe heat exchanger is modelled using three heights (H = 0, 2.5, 3.75, 5 mm) of 45°-helical ribs. Two numbers (4-ribs and 8-ribs) of 45°-helical ribs are attached on the outer surface of the inner pipe of the counter-flow double-pipe heat exchanger and compared with a smooth double-pipe heat exchanger. Three-Dimensional computational fluid dynamics (CFD) model for a laminar forced annular flow is performed in order to study the characteristics of pressure drop and convective heat transfer. In addition, the influence of rib geometries and hydraulic flow behaviour on the thermal performance is system-atically considered in the evaluations. The annular cold flow is investigated with the range of Reynolds numbers from 100 to 1000, with three heights of ribs at the same width (W = 2 mm) and inclined angles of (θ = 45°).The results illustrate that the average Nusselt number and pressure drop increase with an in-creasing number of ribs, the height of ribs and Reynold number, while the friction factor decreas-es with increasing Reynolds numbers. The percentage of averaged Nusselt number enhancement for three rib heights (H = 2.5, 3.75 and 5 mm) at 4-ribs is (34%, 65% and 71%), respectively, While for 8-ribs the enhancement percentage is (48%, 87% and 133%) as compared with the smooth double-pipe heat exchanger at Re = 100. The best performance evaluation criteria of (PEC) at (8-ribs, and H = 5 mm) is 2.8 at Re = 750. The attached 45-helical ribs in the annulus path can generate kind of secondary flows, which enhance the fluid mixing operation between the hot surface of the annular gap and the cold fluid in the mid of the annulus, which lead to a high-temperature distribution. Increasing the height of 45°-helical ribs lead to an increase in the sur-face area subjecting to convective heat transfer.
This article presents a numerical study on forced convection of nanofluid flow in a two-dimensional channel with trapezoidal baffles. One baffle mounted on the top wall of channel and another mounted on the bottom wall of channel. The governing continuity, momentum and energy equations in body-fitted coordinates are iteratively solved using finite volume method and SIMPLE technique. In the current study, SiO2-water nanofluid with nanoparticles volume fraction range of 0- 0.04 and nanoparticles diameters of 30 nm is considered for Reynolds number ranging from 100 to 1000. The effect of baffles height and location, nanopar-ticles volume fraction and Reynolds number on the flow and thermal fields are investigated. It is found that the average Nusselt number as well as thermal hydraulic performance increases with increasing nanopartiles volume fraction and baffle height but accompanied by increases the pressure drop. The results also show that the best thermal- hydraulic performance is obtained at baffle height of 0.3 mm, locations of baffles at upper and lower walls of 10 and 15 mm, respectively, and nanoparticles volume fraction of 0.04 over the ranges of Reynolds number.
In this paper, turbulent forced convection of nanofluid flow in channel with isoscelestriangularbaffles is numerically investigated over Reynolds number ranges of 5000-10000.One baffle mounted on the bottom wall of channel and another mounted on the top wall.Al2O3-water nanofluid with nanoparticles volume fraction of 4% and nanoparticles diametersof 25 nm is used. The governing continuity, momentum and energy equations as well as thelow Reynolds number k-ε model of Launder and Sharma have been solved using finitevolume method. The effect of baffle height, baffle distance as well as Reynolds number onthe flow and thermal characteristics have been presented and discussed. It is found that theenhancement ratio of the average Nusselt number as well as the fraction factor increase withincreasing in the baffles height. It is also found that the enhancement ratio of the averageNusselt number increases as the distance of top baffle decrease. Furthermore, the bestthermal-hydraulic performance of channel with triangular baffles using nanofluid can beobtained at baffle height of 2.5 mm, distance of the top baffle of 40 mm and Reynoldsnumber of 5000.
In this paper, turbulent convective heat transfer in a triangular-ribbed chan-nel has been numerically investigated. SiO2-water with nanoparticles volume fraction of 4% and nanoparticles diameters of 30 nm is employed with Reyn-olds number ranging from 2000 to 8000. The governing continuity, momen-tum and energy equations in addition to low Reynolds number k-ε model have been transformed into body-fitted coordinates system and then solved using finite volume method. The effects of Reynolds number and rib heights on Nusselt number, pressure drop, thermal-hydraulic performance factor and entropy generation are presented and discussed. It is observed that the Nusselt number, pressure drop and thermal performance increase with in-creasing of Reynolds number and rib height. In addition, the highest perfor-mance factor can be obtained at Reynolds number of 6500 and rib height of 1.5 mm.
The present research studies experimentally the effect of the ratio of the centurial hollow on the average of laminar convective heat transfer and the thermal gradation of the thermal boundary layer of three square flat plates. An experimental set-up was made for this purpose containing basically three uniformly Aluminum flat plates of a centurial hollow representing (0.25,0.5,0.75) of the entire surface area of each plate. Each of the three plates were heated by a constant heat flux for a rang of Rayleigh number of (5.62x105≤Ra≤1.67x106).The study showed that increasing the hollow ratio causes to increase the average of convective heat transfer by increasing the average Nusselt number, and the increasing average from a ratio to another decreases by the increases of the hollow ratio. The increasing between the two surfaces at (m=0.25&m=0.5) reached (39.6%) and for (m=0.5&m=0.75) was less than that and reached (29.2%).The increase average between the biggest and smallest hollow ratio was (78%).The study also showed that the maximum thermal gradation was on the out side edge of the plates and increases with the increase of Rayleigh number and the hollow ratio.
The aim of this paper is to in investigate the performance characteristics of counter flow wet cooling towers experimentally by varying air and water temperatures, fins angle, rate of air flow, rate of water flow as well as the evaporation heat transfer, along the height of the tower. The analysis of the theoretical results revealed before that the thermal performance of the cooling tower is sensitive to the degree of saturation of inlet air. Hence, the cooling capacity of the cooling tower increases with decreasing inlet air temperature whereas the overall water temperature fall is curtailed with increasing water to air mass ratio. From the experimental study the efficiency of the cooling tower and cooling tower characteristics are higher in case of low mass flow ratio due to higher contact area of water to air. Because of better contact area between airs to water the drop in performance of the cooling tower is less. The effect of fins angle on the thermal performance of counter flow wet cooling tower was predicted. The experimental study showed that the cooling range, cooling coefficient, , heat load , change in air relative humidity and cooling tower effectiveness increased with increasing fins angles and optimum fins angle obtained from this experimental work was 70 degree, at this angle all cooling tower performance has been calculated were better. While the approach increased with decreasing fins angles, the minimum approach was obtained for 70 degree fins angles and the maximum approach was obtained for 30 degree fins angles.
The research studies the prediction of thermal characteristics for open designer shape of solar collector of flat plate of area 2.34m2, connected to water tank of 85 liter capacity . Mathematical model was represented and made the system of private accounts, transactions and through the creation of mathematical equations and solved numerically using the method of Finite Difference Method (FDM).The results of research is to obtain hot water at average temperatures up to 520C at mid-day during February month, as the water temperature is at its lowest value in this month in Baghdad city, with an average efficiency of the system up to 53.6% .This predictive study is compared with a previous measurement work and confirmed that the results match well.
Enhancing the hydrothermal performance of plate-fin microchannels heat sink (PFMCHS) promises smaller size and lighter weight, and then improve the heat removal in consequently increase the speed of electronic devices. In this numerical study, an innovative hydrothermal design of PFMCHS is suggested by inserting elliptic pins inside microchannels in different; aspect ratio (AR) of pin, pin number ratio (ψ) in order to optimize the hydrothermal design of this kind of heat sinks. The main objectives of this study are; investigating the effect of pins on the performance of PFMCHS by investigating the best geometry in the pinned-fin MCHS and which is higher, thermal or hydraulic performance of this kind of heat sinks and what is the optimal number of pins numerically and what about the pressure drop penalty in the proposed design, little, modest or high increase. It is seen that the thermal resistance of the pinned fin MCHS is about 50% lower, and pressure drop of it is much higher than that of the (PFMCHS) under the condition of equal wind velocity. Maximum mechanical fan power reduction obtained is about 57% for the pinned fin MCHS with ψ = 1 and Dh = 1 ×10-3 m compared to the corresponding original channel heat sink. To show the overall performance of the two parameters; aspect ratio (AR), pin number ratio (ψ), the overall JF factor is estimated and the concrete findings shows that the best hydrothermal performance is obtained at the greater aspect ratio which is around overall JF = 1.2. In addition, the trend of overall JF is going down with the pin number ratio, starting from 1.2 to 1.15. And the concrete findings show that pinned fin MCHS provides thermal performance of 1.42 times greater than the smooth one under the corresponding conditions when one pin is used in each channel
A Numerical study has been conducted to clarify the effect of the buoyancy forces on the thermal development through a horizontal annulus sector heated with constant surface temperature. The study includes the solution of governing equations for the flow and heat transfer of different sections along the channel. Theoretically these governing equations were reduced to four, which are continuity equation, radial and tangential momentum equations, axial momentum equation and vorticity equation in which the variables were the temperature, vorticity, stream function and axial velocity. These equations were reduced to dimensionless equations in which Rayleigh, Prandtl and Reynolds numbers were presented. They were numerically solved by using the marching process explicit finite difference method and Gauss elimination technique. Numerical results for annulus sector heated by constant surface temperature for different values of Rayleigh numbers and total sector angles and diameters ratio were obtained and represented by stream function contours and isotherms and circumferential distribution of local Nusselt number. Also the results include the values of friction factor and average Nusselt number for the pure forced convection. Comparisons are made between the computed results and the analytical or numerical results available in the literature, for all cases compared, satisfactory agreement is obtained. The results include a survey of annulus sector surface in many sites of channel flow, whereas it is apparent that the buoyancy force causes the secondary flow to behave non uniformly at the entrance and then the average heat transfer will increase with the increasing both of diameter ratio and total annulus sector angles. A correlation relationship is extracted to find an average change of Nusselt after the stability of the flow in the fully developed region for the studied ranges of annulus sector angles and diameters ratio.
This paper contributes to the field of improving the performance of heat exchangers using metal foam (MF) full-filled and partially/periodically-filled within the gap between the two pipes. The effect of configuration and arrangement of copper MF (15PPI and porosity of 0.95) installed on the outer surface of the inner pipe of a counter-flow double-pipe heat exchanger on the thermal and hydraulic performance was studied experimentally. The test section consisted of concentric two pipes; the inner pipe which was made of copper while the outer pipe was a Polyvinyl chlo-ride. Air was used as a working fluid in both hot and cold sides. A wide cold air flow rate range was covered from 3 to 36 m3/h which corresponds to Reynolds number (Re) range from 2811 to 31,335. The hot air flow rate was kept constant at 3m3/h. The temperature difference (ΔT) be-tween the inlet hot air and inlet cold air was adopted to be (20°C, 30°C, 40°C, and 50°C). The re-sults revealed that the higher Nusselt number (Nu) was at ΔT= 50°C and the thermal performance of the heat exchanger with the MF for all the arrangements was greater than the smooth heat exchanger. The highest and lowest friction factor was 1.033 and 0.0833 for the case 1 and 8, re-spectively, and the optimal performance evaluation criteria (PEC) was 1.62 for case 7 at Re = 2800. The Nu would be increased with a moderate increase in the friction factor by optimizing the arrangement of the MF. The two essential parameters that played an important role for in-creasing the PEC were the MF diameter and the MF arrangement along the axial length of the cold air stream.
An experimental study is achieved to study the thermal performance of forced unglazed solar air collector supplied with perforated absorber flat plate. The study is carried under Iraqi circumferences in Al-Ramadi city .The collector is inclined (90o) on horizontal for the simplicity of setting such type of collector on the wall building and minimize its weight. The measurement is recorded on Winter season for two sunny days and two cloudy days in (January 2012). The results show that its possible to use this type of collectors for heating in Winter time because the maximum out air temperature reach to (34oC) when ambient air temperature at (17oC) in sunny days. A good agreement is shown with the published studies Finally its obtained a good effectiveness for perforated flat plate absorber with high system efficiency.
In this article, an experimental study of the single-pass hybrid (PV/T) collector is conducted in the climatic conditions of Fallujah city, where the experimental results are compared with a previous research to validate the results. The effect of changing the angle of inclination of the hybrid collector (PV/T) and its effect on the electrical power in the range (20°-50°) is studied. The optimum angle of the collector is found to be 30°, which gives a maximum electrical power of 58.8 W at average solar radiation of 734.35 W/m2. In another experimental study with different air flow rates ranged from 0.04 kg/s to 0163 kg/s, where it is found that the maximum electrical power of 57.66 W at an air flow rate of 0.135 kg/s, while the maximum thermal efficiency reaches 33.53% at an air flow of 0.163 kg/s at average solar radiation of 786 W/m2.
Enhancing heat transfer, particularly through convection, is crucial in various industrial applications, driving ongoing interest in methods to improve heat transfer rates and the efficiency of heat transfer equipment. Ultrasound has emerged as an effective and reliable method for boosting convective heat transfer, primarily due to the unique phenomena it creates within irradiated fluids, such as sound cavitation and streaming. In heat exchanges, where forced heat convection is typically the primary technique, ultrasound has shown notable effectiveness by improving convective heat transfer and reducing fouling. This paper summarizes recent research on the application of ultrasound in both forced and free convection heat transfer systems, emphasizing studies published in the past decade. Previous research has demonstrated that the influence of ultrasound on heat transfer varies significantly between laminar and turbulent flows, necessitating thoughtful consideration in system design. While progress has been made, gaps remain in understanding the influence of flow rates across systems and the thermal enhancement provided by ultrasound in gaseous systems. Furthermore, most research is conducted in experimental settings, highlighting the need for increased studies to support industrial applications.
In this study, a numerical investigation on the thermo-hydraulic performance of thedouble pipe heat exchanger into heat transfer by different shapes of fins on the outersurface for the inner tube as extended surfaces. The inner and outer diameters of theinner pipe were (16.05 mm), (19.05 mm) respectively, and (34.1 mm), (38.1 mm) for theouter tube. The length of the heat exchanger was (1000 mm). Hot and cold water wereused as the working fluid, where the hot water flows inside of the inner one in counterflow with the cold water which flows in the annulus. The inlet temperature for the hotwater is (75 OC) while it is (30 OC) for the cold. The hot fluid flows at constant ratewhich is (0.1kg/s) while the cold is varied from (0.1 kg/s to 0.2 kg/s).The study wasperform using the known commercial CFD package (ANSYS – FLUNET 15) .Theresults shows that both (rectangular and triangular) fins enhances the heat transfercoefficient compare with the conventional plain tube .The rectangular fins presents anheat transfer enhancement ratio of (61% to 74%). Using of extended surfaces present agood result in saving energy by enhancing the performance of the double pipe heatexchangers used in petroleum industry.
The object of this paper was determined the thermal behavior of present and future constructs Iraqi walls at Baghdad climate region (Latitude 33.2 °N) with or without (40) mm insulating materials. The study was carried out at day (21) July for East Orientation. The obtained results were tabulated in terms of over all heat transfer coefficient, weight of the wall per unit area, wall thickness, temperature difference between outside and inside wall face and the temperature difference between inside of the room and it's inside wall surface through on. day hours and it's average values.
These systems show great promise by converting waste heat from photovoltaic modules into additional electrical power. The study analyzes the performance and efficiency of the hybrid PV-TEG systems under varying conditions, such as different solar concentration ratios, cooling methods, and materials. While these innovations promise to improve system efficiency, the review also identifies several challenges, including increased thermal resistance, higher system costs, and the minimal temperature difference across the TEG, which significantly limits its performance. This limitation, where the temperature differential is often too small to be effectively harnessed, reduces the TEG's overall efficiency and hinders the integrated system's potential gains. The review underscores the need for urgent and extensive research to develop optimized design configurations, durable mathematical models, and further experimental validation to ensure the practical viability of these systems under diverse environmental conditions. Despite these challenges, the potential of PV-TEG systems to revolutionize solar energy technologies is undeniable.PV-TEG performance is intricately linked to environmental conditions: higher solar radiation boosts efficiency, but increased ambient temperatures reduce it. TEGs often hinder PV cooling, yielding minimal efficiency gains. Non-uniform heat and low-temperature differences across TEGs further decrease performance. While hybrids can improve power conversion, high costs limit feasibility. However, with strategies such as enhancing solar concentration, using effective cooling methods like water or nanofluids, and advanced materials like phase change materials, the efficiency and reliability of these systems can be significantly improved
The present paper addresses the numerical study of non-Darcy laminar forced convectionflows in a pipe partially filled with grooved metallic foam attached in the inner pipe wall,which is subjected to a constant heat flux. Computations are carried out for nine differentdimensions of grooves with different Reynolds numbers namely; (250 ≤ Re ≤ 2000) andtheir influences on the fluid flow and heat transfer are discussed. The governing and energyequations are solved using the finite volume method (FVM) with temperature-dependentwater properties. The novelty of this work is developing of a new design for the metallicfoam, which has not studied previously yet. It is observed that the two helical grooves withtwo pitches increase the Nu around 5.23% and decrease the pumping power nearly 12%. Itis also showed a reduction in the amount of material required for manufacturing the heatexchanger, which leads to a decline in the weight of the system 8.29%.
Solar cells play a vital role in renewable energy systems, and ongoing research is dedicated to enhancing their power efficiency and longevity. Advancements in perovskite solar cells, particularly in power conversion efficiency (PCE), have shown significant progress, confirming its viability as a technology. Perovskite solar cells have achieved power conversion efficiency (PCE) levels of up to 25.5%, comparable to conventional photovoltaic technologies like silicon, gallium arsenide, and cadmium telluride. The substantial enhancement in power conversion efficiency figures over the last decade has shown a remarkable advancement in the efficiency of perovskite solar cells. This study examines the trajectory of perovskite solar cells in becoming economically feasible and generally embraced as a critical renewable energy technology. The advancement of flexible and wearable solar cells, together with miniature solar-powered sensors, has increased the efficiency of solar cell power production. Perovskite solar cells have shown a specific power of 23 W/g, much higher than traditional silicon or gallium arsenide solar cells. Further research is needed to address the challenges related to perovskite solar cells' stability and power conversion efficiency. Perovskite solar cells integrated with energy storage units have the potential to enhance the overall efficiency of the system. This study discusses an approach to improve the efficiency of novel solar cells, specifically focusing on lead-free tin-based perovskite solar cells and tandem solar cells. The advancement of technology in thin films, such as hybrid nanocomposite thin films and quantum dot-sensitive solar cells, has the potential to improve the efficiency of solar cells. The primary outcome of this study is derived from the following inference: incorporating plasmatic nanostructures into thermal energy systems will enhance their efficiency and sustainability by integrating solar energy.
Internet-based platforms such as social media have a great deal of big data that is available in the shape of text, audio, video, and image. Sentiment Analysis (SA) of this big data has become a field of computational studies. Therefore, SA is necessary in texts in the form of messages or posts to determine whether a sentiment is negative or positive. SA is also crucial for the development of opinion mining systems. SA combines techniques of Natural Language Processing (NLP) with data mining approaches for developing inelegant systems. Therefore, an approach that can classify sentiments into two classes, namely, positive sentiment and negative sentiment is proposed. A Multilayer Perceptron (MLP) classifier has been used in this document classification system. The present research aims to provide an effective approach to improving the accuracy of SA systems. The proposed approach is applied to and tested on two datasets, namely, a Twitter dataset and a movie review dataset; the accuracies achieved reach 85% and 99% respectively.
Better understanding the innovative process of renewable energy technologies is important for tackling climate change. Concentrated solar power (CSP) is a method of electric generation fueled by the heat of the sun, an endless source of clean, free energy. Commercially viable and quickly expanding, this type of solar technology requires strong, direct solar radiation and is primarily used as a large, centralized source of power for utilities. This study has focused on the feasibility of improving concentrating solar power (CSP) plant efficiency, by manufacturing a diminished prototype. Three states were studied, coloring the central target with a selective black color, fixing a reflector with arc form behind the target, and using these two changes together. The results showed an improvement in the thermal storage varied form month to month. The maximum stored energy was gained at August with increments about 56.1%, 58.63%, 62.23 and 64.69% for ordinary target, black painting, using reflector alone and black target with reflector together, respectively compared with stored energy for March.
In this research we have prepared a composite material by using Vegetative Cellulose Fibers of Cannabis (Cann F) to reinforced a matrix of Unsaturated Polyester (UP) resin. This kind of fibers is distinguished by good properties such as high tensile strength, low elongation, thermal resistance and low cost. The impact strength was tested by using Charpy method for three materials (UP resin), composite (UP / Cann F) and composite (UP/Glass F). The results indicated that the fracture energy (Uc) decreased as the notch depth (a) increased on the sample from (0.7 mm) up to (4.9 mm). However, the fracture energy increased as the temperature of the composite increased for different temperatures of (0, 35, 50 and 75) oC. It was noticed that the Material toughness (Gc) has been improved significantly, where in case of the composite (UP /Cann F), the improvement of (Gc) was from (2.45 kJ/m2 ) to (14.5 kJ/m2 ) and it was (17 kJ/m2 ) for composite (UP/GF) has been measured at (35) oC. When those composite materials (UP/Cann F) exposed to humidity for a period of (72 hrs) without immersion, their properties did not change, hence the effects are not of chemical but of physical nature. The conclusion, the difference between the toughness of the material (Gc) for the reinforced composites by Cannabis and E-glass fibers for all temperatures is not large, so this encourage the development of Cannabis fiber reinforced composites in the future to abundance, and low cost for industrial investment
The reducing of heat gain through the outer walls of the buildings in summer will contribute in reducing the air conditioning costs. This is one of the best features of design requirements nowadays. To achieve this, the phase change materials (PCM) can be used as an embedded material in the walls to reduce heat transfer. The paraffin wax is one of the common materials used as a PCM in the building walls. The paraffin wax is used in this study with (20%) volume percentage in the external layer of the treated wall. In the present work, the treated wall (with embedded wax in the wall) and non-treated walls have been experimentally investigated. Two Iraqi wall models were employed to run the experiments, whereby these models were exposed to an external heat source using (1000 W) projector for each model. The temperatures were recorded at different locations in the walls during the charging and discharging periods. The results showed that the temperature of the internal surface for the treated wall was lower than that of the non-treated wall at the end of the discharging period (6 hr) where the temperature difference between the treated and non-treated walls was reached (1.6℃).
In order to increase output power and thermal efficiency, the temperature going into a gas turbine is much higher than the point at which the material would melt. In order to protect the airfoil of a gas turbine from hot gas and, as a result, extend the blade's life, new internal and film cooling arrangements must be developed immediately. When the incoming air is heated, the gas turbine's output rises proportionately as well. The power output of a gas turbine is determined by the amount of mass flowing through it. Because of this, electricity generation decreases on warm days due to a decrease in air density. It takes a 1% rise in air temperature to reduce power production by 1%. The purpose of this research is to discuss current strategies for cooling incoming air to gas turbines. Mechanical chillers, evaporative coolers, and fogging methods have all been examined. This study focuses primarily on the fogging inlet air cooling system. There are many ways to cool the air going into the engine, but the high-pressure intake fogging method has become more popular over the past ten years because it costs less and makes a big difference in power.
Addition of 40% of Phosphogypsum ( Pg ) and Cement Klin dust ( CKD) to Asphalt has given encouraging results including penetration , softening , Flash point an fire point identical to the accepted properties of industrial asphalt. Chlorination of Natural Asphalt at 1.5 hr the same additive of 40% in the presence of Fe2O3 as catalyst have affered optimizing rhealogy and thermal properties. The FT-IR and UV identifications have indicated the existence of clear groups as aresult of chlorination and additives. The microscopic study for floor samples have shown the good atomic distribution to floor asphalt .Generalty results on the modified natural asphalt ( Heet- Abo- Aljeer ) have proved the capability of using it in paving instead of Industrial asphalt .
The concrete members several blessings over steel beam, like high resistance to prominent tem-perature, higher resistance to fatigue and buckling, high resistance to thermal shock, fire re-sistance, robust resistance against, and explosion. However there are some disadvantages as a result of exploitation totally different materials to product it. The most downside of structural concrete member is its deprived the strength to tensile stresses.The bond mechanism between steel bars and concrete is thought to be influenced by multiple parameters, like the strength of the encompassing media, the prevalence of cacophonous cracks within the concrete and therefore the yield stress of the reinforcement. However, properties of concrete mass has significantly effect when it was subjected to elevated temperature.The objective of this paper presents the results that allocating with the bond behavior of the rein-forcement of steel bar systems below static pull-out loading tests subjected to elevated tempera-tures. This numerical technique relies on relative slip and therefore the stress of bond distribu-tions done the embedded length and size of the bar within the concrete cylinder specimens. The obtained results square measure given and commented with the elemental characteristics of ferroconcrete members. The comparison showed smart agreement with experimental results
Temperature distribution through asphalt and the underlying layer have been obtained numerically using finite element method where a varying induced heat from sun and environment cause fluctuating temperature distribution throughout .The maximum effect of these parameters on the temperature of the asphalt is expected in summer, so the temperature distribution was studied in the summer only. Some interesting results were found ; at tropical zone such as in Baghdad the asphalt surface temperature may reach (70 C ) and it is reduced with depth .Due to fluctuating environment heat effect, the subsequent temperature of the asphalt and the underlying layer may fluctuating with some delay and damping depending on the layers thermal properties , these result may be used later to predict both the erosion rate of car tiers and asphalt thickness, also the preserved energy using asphalt layer may be used to confined heat for further usage as in electrical generation.
Reducing energy consumption and to ensure thermal comfort are two important considerations in designing an air conditioning system. The control strategy proposed is fuzzy logic controller (FLC).This paper describes the development of an algorithm for air condition control system based on fuzzy logic (FL) to provide the conditions necessary for comfort living inside a building.Simulation of the controlling air conditioning system, on which the strategy is adopted, was carried out based on MATLAB This system consists of two sensors for feedback control: one to monitor temperature and another one to monitor humidity. The controller i.e. FLC was developed to control the compressor motor speed and fan speed in order to maintain the room temperature at or close to the setpoint temperature.
Heat exchangers are considered essential parts in many industrial applications. The construction process for heat exchangers is completely complex because accurate measurements of the penalty of pressure-drop and the rate of heat transfer are needed. Designing a compact heat exchanger with a high heat transfer rate, while utilizing the least amount of pumping power, is the main design challenge. The most recent investigations (including experimental results, numerical models, and analytical solutions) in the field of circular tube heat exchangers in general, and twisted tapes and wire coils in particular, are covered in this review article, which has more than 90 references. The enhancement techniques in heat exchangers tubes can generally be separated into three groups: active, passive, and hybrid (compound) approaches. This article reviews the literature on advancements made in passive enhancement approaches, with a specific focus on two types of passive promoters that employ twisted tapes and wire coils. The main contribution of this research is to highlight the behavior and structure of fluid flow and the heat transfer features for the twisted tapes and the wire coils. It also explains how these passive promoters can be used in circular tube heat exchangers to improve hydrothermal performance. Where, the installation of wire coils and twisted tapes considerably alters the flow pattern and aids in the improvement of heat transfer. Where, comprehending the behavior of fluid flow is crucial and contributes to the enhancement of heat transfer. Twisted tapes are less effective in turbulent flow than wire coils because they obstruct the flow, which results in a significant pressure reduction. When it comes to turbulent flow, the thermohydraulic performance of twisted tapes is lower to that of wire coils.
In this article, an experimental study of the single-pass hybrid (PV/T) collector is conducted in the climatic conditions of Fallujah city, where the experimental results are compared with a previous research to validate the results. The effect of changing the angle of inclination of the hybrid collector (PV/T) and its effect on the electrical power in the range (20°-50°) is studied. The optimum angle of the collector is found to be 30°, which gives a maximum electrical power of 58.8 W at average solar radiation of 734.35 W/m2. In another experimental study with different air flow rates ranged from 0.04 kg/s to 0163 kg/s, where it is found that the maximum electrical power of 57.66 W at an air flow rate of 0.135 kg/s, while the maximum thermal efficiency reaches 33.53% at an air flow of 0.163 kg/s at average solar radiation of 786 W/m2.
Photovoltaic cells are one of the renewable energy sources that have been employed to produce electrical energy from solar radiation falling on them, but not all incident radiate will produce electrical energy, part of those radiate cause the panel temperature to rise, reducing its efficiency and its operational life, unless an attempt is made to employ one of the traditional cooling methods or innovating other methods to cooling it to reduce this effect, which it represented in the active and passive cooling method. In fact, it is difficult to compare the active method with the passive method, as each method has its Advantages and disadvantages that may suit one region without another. But in general, there are basic factors through which at least a comparison between the two methods can be made. Relatively the passive method is less expensive, in addition to no need for additional parts such as pumps and controllers, there is no energy consumption because it does not require power. But it is less effective and efficient than the active method, while the active method has the ability to disperse the heat higher than the passive method. However, it necessitates the use of electricity and is frequently costlier than the passive strategy. In this review, the most common active and passive cases were reviewed, and the pros and cons of each case are summarized in discussion due to the difficulty to list them. The review recommends that future studies should focus on active water cooling and heat-sink, both of which are viable cooling strategies.