Cover
Vol. 15 No. 2 (2024)

Published: November 15, 2024

Pages: 29-45

Review Paper

Damage to Limestone Exposed to High Temperatures - A Review

Abstract

Previous studies showed that fire incidents cause a considerable deterioration of limestone samples' engineering and physical properties. Various laboratory tests were used in previous studies to investigate the properties of limestone. These tests included destructive and non-destructive tests like the hammer test, ultrasonic pulse velocity test, water-capillary rise test, and water transfer properties test, as well as destructive tests like the unconfined compression test and Brazilian tensile test. The stones of buildings exposed to fire are occasionally assessed on the site. This study analysed the physical and mechanical changes that occurred to the limestone samples when subjected to high temperatures, the damage mechanism, and laboratory or field damage assessment. This study also includes a review of the most significant studies that looked at how alternative cooling techniques—rapid water cooling or gradual air cooling—affect stone samples subjected to high temperatures and compared the behaviour of the samples in each scenario

References

  1. L. Gauri, A. N. Chowdhury, N. P. Kulshreshtha, and A. R. Punuru, “Geologic features and durability of limestones at the Sphinx,” Environ. Geol. Water Sci., vol. 16, pp. 57–62, 1990.
  2. Jodry, M. J. Heap, K. Bayramov, G. Alizada, S. Rustamova, and S. Nabiyeva, “Influence of High Temperature on the Physical and Mechanical Properties of Porous Limestone from Baku (Azerbaijan),” Fire, vol. 6, no. 7, 2023, doi: 10.3390/fire6070263.
  3. Al-Omari, X. Brunetaud, K. Beck, and M. Al-Mukhtar, “Climatic conditions and limestone decay in Al-Namrud monuments, Iraq: Review and discussion,” 2012 1st Natl. Conf. Eng. Sci. FNCES 2012, no. November, 2012, doi: 10.1109/NCES.2012.6740455.
  4. Manuello Bertetto, P. D’Angella, and M. Fronterre’, “Residual strength evaluation of Notre Dame surviving masonry after the fire,” Eng. Fail. Anal., vol. 122, no. December 2020, p. 105183, 2021, doi: 10.1016/j.engfailanal.2020.105183.
  5. Dionísio, “Stone decay induced by fire on historic buildings: The case of the cloister of Lisbon Cathedral (Portugal),” Geol. Soc. Spec. Publ., vol. 271, pp. 87–98, 2007, doi: 10.1144/GSL.SP.2007.271.01.10.
  6. P. Borg, M. Hajpál, and Á. Török, “The fire performance of limestone,” Appl. Struct. Fire Eng., no. April, pp. 19–20, 2013.
  7. Al-Omari, K. Beck, X. Brunetaud, and M. Al-Mukhtar, “Weathering of limestone on Al-Ziggurat walls in the ancient Al-Nimrud city (Iraq),” Environ. Earth Sci., vol. 74, no. 1, pp. 609–620, 2015, doi: 10.1007/s12665-015-4064-9.
  8. H. Abdul Samad, “Impact of Materials on Conservation of the Built Environment: Case Study of Historic Mosques in Mosul Old City,” Iran. J. Energy Environ., vol. 3, pp. 24–31, 2012, doi: 10.5829/idosi.ijee.2012.03.05.05.
  9. Bin Meng, C. K. Wang, J. F. Liu, M. W. Zhang, M. M. Lu, and Y. Wu, “Physical and micro-structural characteristics of limestone after high temperature exposure,” Bull. Eng. Geol. Environ., vol. 79, no. 3, pp. 1259–1274, 2020, doi: 10.1007/s10064-019-01620-0.
  10. Yavuz, S. Demirdag, and S. Caran, “Thermal effect on the physical properties of carbonate rocks,” Int. J. Rock Mech. Min. Sci., vol. 47, no. 1, pp. 94–103, 2010, doi: 10.1016/j.ijrmms.2009.09.014.
  11. Ozguven and Y. Ozcelik, “Effects of high temperature on physico-mechanical properties of Turkish natural building stones,” Eng. Geol., vol. 183, pp. 127–136, 2014, doi: 10.1016/j.enggeo.2014.10.006.
  12. S. González-Gómez, P. Quintana, A. May-Pat, F. Avilés, J. May-Crespo, and J. J. Alvarado-Gil, “Thermal effects on the physical properties of limestones from the Yucatan Peninsula,” Int. J. Rock Mech. Min. Sci., vol. 75, pp. 182–189, 2015, doi: 10.1016/j.ijrmms.2014.12.010.
  13. Siegesmund and H. Dürrast, “Physical and mechanical properties of rocks,” in Stone in architecture: properties, durability, Springer, 2010, pp. 97–225.
  14. Vigroux, F. Sciarretta, J. Eslami, A.-L. Beaucour, A. Bourgès, and A. Noumowé, “High temperature effects on the properties of limestones: post-fire diagnostics and material’s durability,” Mater. Struct., vol. 55, no. 10, p. 253, 2022.
  15. Tian, T. Kempka, N.-X. Xu, and M. Ziegler, “Physical properties of sandstones after high temperature treatment,” Rock Mech. rock Eng., vol. 45, pp. 1113–1117, 2012.
  16. IOANNOU, K. KYRIAKIDES, L. PETROU, and G. HADJISOPHOCLEOUS, “Physicomechanical properties of natural building limestones after exposure to elevated temperatures,” in Proceedings of the 1st International Conference in Safety and Crisis Management in the Construction, Tourism and SME Sectors, Universal-Publishers, p. 302.
  17. Tang, X. Mao, L. Zhang, H. Yin, and Y. Li, “Effects of strain rates on mechanical properties of limestone under high temperature,” Min. Sci. Technol., vol. 21, no. 6, pp. 857–861, 2011.
  18. Meng, M. Zhang, L. Han, H. Pu, and Y. Chen, “Experimental research on the influence of loading rate on the mechanical properties of limestone in a high-temperature state,” Bull. Eng. Geol. Environ., vol. 78, no. 5, pp. 3479–3492, 2019, doi: 10.1007/s10064-018-1332-4.
  19. Tufail, K. Shahzada, B. Gencturk, and J. Wei, “Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete,” Int. J. Concr. Struct. Mater., vol. 11, no. 1, pp. 17–28, 2017, doi: 10.1007/s40069-016-0175-2.
  20. Dongming and Y. Yushun, “The Effect of High Temperature on Tensile Strength and Damage Characteristics of Limestone,” Geotech. Geol. Eng., vol. 36, no. 6, pp. 3527–3535, 2018, doi: 10.1007/s10706-018-0552-5.
  21. biao MAO, L. ying ZHANG, T. zhen LI, and H. shun LIU, “Properties of failure mode and thermal damage for limestone at high temperature,” Min. Sci. Technol., vol. 19, no. 3, pp. 290–294, 2009, doi: 10.1016/S1674-5264(09)60054-5.
  22. Liu and J. Xu, “An experimental study on the physico-mechanical properties of two post-high-temperature rocks,” Eng. Geol., vol. 185, pp. 63–70, 2015.
  23. Tian, T. Kempka, S. Yu, and M. Ziegler, “Mechanical properties of sandstones exposed to high temperature,” Rock Mech. Rock Eng., vol. 49, pp. 321–327, 2016.
  24. Liu, R. Li, H. Qin, and W. Sun, “Experimental SHPB study of limestone damage under confining pressures after exposure to elevated temperatures,” Metals (Basel)., vol. 11, no. 10, pp. 1–14, 2021, doi: 10.3390/met11101663.
  25. Dolinar, G. Trtnik, and T. Hozjan, “Determination of mechanical properties of normal strength limestone concrete after exposure to elevated temperatures,” J. Phys. Conf. Ser., vol. 1107, no. 3, 2018, doi: 10.1088/1742-6596/1107/3/032018.
  26. Moropoulou, A. Bakolas, and E. Aggelakopoulou, “The effects of limestone characteristics and calcination temperature to the reactivity of the quicklime,” Cem. Concr. Res., vol. 31, no. 4, pp. 633–639, 2001.
  27. Zhang, Q. Sun, and J. Geng, “Microstructural characterization of limestone exposed to heat with XRD, SEM and TG-DSC,” Mater. Charact., vol. 134, no. October, pp. 285–295, 2017, doi: 10.1016/j.matchar.2017.11.007.
  28. Zhu, F. Huang, S. Li, and Y. Zhou, “Microscopic characteristics and thermodynamic property changes in limestone under high-temperature treatment,” Mater. Lett., vol. 356, p. 135558, 2024.
  29. Dovletov, “Effect of High Temperature on Physical and Mechanical Properties of Clay Shales (Caprock),” Univ. Calgary, 2022.
  30. T. Delegou et al., “The effect of fire on building materials: The case-study of the varnakova monastery cells in central greece,” Heritage, vol. 2, no. 2, pp. 1233–1259, 2019, doi: 10.3390/heritage2020080.
  31. Guibaud, J. C. Mindeguia, A. Albuerne, T. Parent, and J. Torero, “Notre-Dame de Paris as a validation case to improve fire safety modelling in historic buildings,” J. Cult. Herit., no. xxxx, 2023, doi: 10.1016/j.culher.2023.05.008.
  32. L. P. Wasantha, M. Guerrieri, and T. Xu, “Effects of tunnel fires on the mechanical behaviour of rocks in the vicinity – A review,” Tunn. Undergr. Sp. Technol., vol. 108, no. October, p. 103667, 2021, doi: 10.1016/j.tust.2020.103667.
  33. N. Naoom and K. I. Mohammad, “Rehabilitation and Repair of AL- Tahera Church in AL- Hamdaniya District, Mosul City, Iraq,” Case Stud. Constr. Mater., vol. 16, no. November 2021, p. e00787, 2022, doi: 10.1016/j.cscm.2021.e00787.
  34. Liu, H. Ji, D. Elsworth, S. Zhi, X. Lv, and T. Wang, “Dual-damage constitutive model to define thermal damage in rock,” Int. J. Rock Mech. Min. Sci., vol. 126, no. October 2019, p. 104185, 2020, doi: 10.1016/j.ijrmms.2019.104185.
  35. Chakrabarti, T. Yates, and A. Lewry, “Effect of fire damage on natural stonework in buildings,” Constr. Build. Mater., vol. 10, no. 7, pp. 539–544, 1996.
  36. K. Dwivedi, M. Vishwakarma, and P. A. Soni, “Advances and Researches on Non Destructive Testing: A Review,” Mater. Today Proc., vol. 5, no. 2, pp. 3690–3698, 2018, doi: 10.1016/j.matpr.2017.11.620.
  37. Gholizadeh, “A review of non-destructive testing methods of composite materials,” Procedia Struct. Integr., vol. 1, pp. 50–57, 2016, doi: 10.1016/j.prostr.2016.02.008.
  38. Alomari, “Risk assessment of thermo-hydro mechanical stone decay in built heritage Asaad Alomari Evaluation des risques d ’ altération d ’ origine thermo-hydro-mécanique des pierres du patrimoine bâti,” 2014.
  39. Sève, Science de la couleur: Aspects physiques et perceptifs. Chalagam éd., 2009.
  40. Sève, “Physique de la couleur: de l’apparence colorée à la technique colorimétrique,” 1996.
  41. Shen et al., “Damage characteristics and thermo-physical properties changes of limestone and sandstone during thermal treatment from −30 °C to 1000 °C,” Heat Mass Transf. und Stoffuebertragung, vol. 54, no. 11, pp. 3389–3407, 2018, doi: 10.1007/s00231-018-2376-5.
  42. Ozguven and Y. Ozcelik, “Investigation of some property changes of natural building stones exposed to fire and high heat,” Constr. Build. Mater., vol. 38, no. June, pp. 813–821, 2013, doi: 10.1016/j.conbuildmat.2012.09.072.
  43. Vasanelli, D. Colangiuli, A. Calia, M. Sileo, and M. A. Aiello, “Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone,” Ultrasonics, vol. 60, no. February, pp. 33–40, 2015, doi: 10.1016/j.ultras.2015.02.010.
  44. Bodare, “Non destructive test methods of stone and rock,” Stock. R. Inst. Technol., 2017.
  45. F. Andriani and L. Germinario, “Thermal decay of carbonate dimension stones: fabric, physical and mechanical changes,” Environ. Earth Sci., vol. 72, pp. 2523–2539, 2014.
  46. Zhang, H. Qian, Q. Sun, and Y. Chen, “Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone,” Environ. Earth Sci., vol. 74, no. 7, pp. 5739–5748, 2015, doi: 10.1007/s12665-015-4591-4.
  47. McPhee, J. Reed, and I. Zubizarreta, “Capillary pressure,” in Developments in Petroleum Science, vol. 64, Elsevier, 2015, pp. 449–517.
  48. Ugur, N. Sengun, S. Demirdag, and R. Altindag, “Analysis of the alterations in porosity features of some natural stones due to thermal effect,” Ultrasonics, vol. 54, no. 5, pp. 1332–1336, 2014, doi: 10.1016/j.ultras.2014.01.013.
  49. Vandevoorde, M. Pamplona, O. Schalm, Y. Vanhellemont, V. Cnudde, and E. Verhaeven, “Contact sponge method: Performance of a promising tool for measuring the initial water absorption,” J. Cult. Herit., vol. 10, no. 1, pp. 41–47, 2009.
  50. Theodoridou, F. Dagrain, and I. Ioannou, “Micro-destructive cutting techniques for the characterization of natural limestone,” Int. J. Rock Mech. Min. Sci., vol. 76, pp. 98–103, 2015, doi: 10.1016/j.ijrmms.2015.02.012.
  51. ISRM, “International society for rock mechanics commission on standardization of laboratory and field tests: suggested methods for the quantitative description of discontinuities in rock masses,” Int J Rock Mech Min Sci Geomech Abstr, vol. 15, no. 6, pp. 319–368, 1978.
  52. Sivakugan, S. K. Shukla, and B. M. Das, Rock mechanics: an introduction. Crc Press, 2013.
  53. Brotóns, R. Tomás, S. Ivorra, and J. C. Alarcón, “Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite,” Eng. Geol., vol. 167, no. November 2018, pp. 117–127, 2013, doi: 10.1016/j.enggeo.2013.10.012.
  54. Zhang, Q. Sun, S. Zhu, and B. Wang, “Experimental study on mechanical and porous characteristics of limestone affected by high temperature,” Appl. Therm. Eng., vol. 110, pp. 356–362, 2017, doi: 10.1016/j.applthermaleng.2016.08.194.
  55. Sengun, “Influence of thermal damage on the physical and mechanical properties of carbonate rocks,” Arab. J. Geosci., vol. 7, no. 12, pp. 5543–5551, 2014, doi: 10.1007/s12517-013-1177-x.
  56. Prasetya, N. P. Widodo, G. M. Simangungsong, and U. Hasan, “Study of Temperature Effect to the Brazilian Tensile Strength of Limestone,” no. November, 2023.
  57. N. Sirdesai, T. N. Singh, P. G. Ranjith, and R. Singh, “Effect of varied durations of thermal treatment on the tensile strength of red sandstone,” Rock Mech. rock Eng., vol. 50, pp. 205–213, 2017.
  58. Sasińska, Fire-Damaged Stone: The Effects of Heat, Flame, and Quenching (Doctoral dissertation, Columbia University), 2014.
  59. Yang, L. Y. Fu, W. Zhang, and Z. Wang, “Mechanical property and thermal damage factor of limestone at high temperature,” Int. J. Rock Mech. Min. Sci., vol. 117, no. September 2018, pp. 11–19, 2019, doi: 10.1016/j.ijrmms.2019.03.012.
  60. Martínez-Ibáñez, M. E. Garrido, C. H. Signes, A. Basco, T. Miranda, and R. Tomás, “Thermal effects on the drilling performance of a limestone: Relationships with physical and mechanical properties,” Appl. Sci., vol. 11, no. 7, 2021, doi: 10.3390/app11073286.
  61. İ. Bekem Kara, “Effects of cooling regimes on limestone rock and concrete with limestone aggregates at elevated temperatures,” J. Rock Mech. Min. Sci., vol. 138, no. January, 2021, doi: 10.1016/j.ijrmms.2021.104618.
  62. Á. Török and M. Hajpàl, “Effect of temperature changes on the mineralogy and physical properties of sandstones: a laboratory study TT - Bauinstandsetzen und Baudenkmalpflege: eine internationale Zeitschrift,” Build. Monum. an Int. J. = Bauinstandsetz. und Baudenkmalpfl. eine Int. Zeitschrift, vol. 11, no. 4, pp. 211–218, 2005.
  63. S. Zhang, M. Sun, Q. Guo, L. Zhao, and Z. Li, “Study on the mechanical properties and durability of hydraulic lime mortars based on limestone and potassium feldspar,” Appl. Sci., vol. 13, no. 4, p. 2412, 2023.