##issue.coverImage.altText##

Vol. 15 No. 2 (2024)

Published November 15, 2024 Pages: 1-154
Download Full Issue (PDF)

Articles in This Issue

Research Paper
A Novel Architecture for M-FSK /DS Spread Spectrum Communication System
PDF Full Text
Abstract

The direct sequence (DS) spread spectrum communication technique is widely regarded as one of the most effective methods of mitigating the effects of a repeating jammer in military communications systems. The proposed system coupled DS with multiple frequency shift keying (DS/MFSK). It is comprised of a transmitter and a receiver. Non-coherent demodulation is examined, as are the spreading sequences in question. The effect of AWGN and Rayleigh fading channels on the proposed approach's bit error rate (BER) is examined. The investigation demonstrates that even with an 8 dB signal-to-noise ratio, superior outcomes can be achieved; this study's suggested endeavor is to create a novel transceiver system built on the DS/MFSK modular architecture. MFSK modulation prevents multiple-access interference, while DS is typically employed to boost system efficiency across erratic fading. Test results show that reliability on the AWGN channel decreases a little while reliability is greatly enhanced by Rayleigh fading. Moreover, notable improvements in bandwidth efficiency are achieved.

Research Paper
Thermal Conductivity Enhancement of Hybrid Epoxy Composites Using Copper Oxide Nanoparticles and Carbon-Nanotubes
PDF Full Text
Abstract

In this current experimental research, the amount of improvement in the thermal conductivity of HEC hybrid epoxy resins was studied by adding copper oxide nanoparticles CuONp and carbon nanotubes (CNTs) as hybrid additives in different proportions to select the sample with the highest thermal conductivity value to include it in the design of the Flat Plate Solar Collector FPSC as Thermal Interface Material TIM reduces thermal resistance between the absorber plate and the tube. Four groups of samples were prepared using a mass balance with a sensitivity of 0.01g and a magnetic mixing device, then poured into cubic plastic molds to take the shape of the sample. The first group consists of one sample of pure epoxy to calibrate the thermal properties testing device through it. The second group consists of five samples of epoxy loaded with CNTs by weight (1, 3, 5, 7.5, 10) %. The third group consists of five samples of epoxy loaded with CuONp with weight percentages of (1, 3, 5, 7.5, 10) %. The fourth group consists of five samples of epoxy loaded with CuONp and CNTs combined in weight percentages of (1, 3, 5, 7.5, 10) %. The thermal conductivity of the samples was measured experimentally using the hot disk analyzer technique to measure thermal specifications. After comparing the thermal conductivity values of the samples, the highest value was 1.57 W/mK for the HEC sample loaded with 10% CNTs, which represents 9.23 times higher than pure epoxy

Research Paper
Miniaturized Multiband Reconfigurable Antenna at Sub-6 and mm-Wave Band Based on Fractal Geometry
PDF Full Text
Abstract

This work presents a compact reconfigurable antenna based on fractal geometry. The investigation discusses the challenges of lower antenna gain and bandwidth, critical for efficient data propagation in 5G systems, particularly for low-profile devices. Its goal is to develop a small, multiband antenna capable of operating in all current and future 5G bands and improve bandwidth and gain for mm-wave and sub-6 GHz applications. The proposed design covers the sub-6 band (2.8, 3.9, 4, 6.2) GHz and the mm-wave band (24.4, 27.1, 28.5, 29.3, 30.6, 33.9, 34.6, 35.2, 38.8, 44.4, 45.1, 59.7, 61.5, 62.3, 65.2, 67.4 and 69.5) GHz with S11 less than -10 dB. A maximum gain of 12.8 dB and a radiation efficiency of 94% are achieved. A partial ground plane with a 50 Ω feed line is used in this design. The antenna is printed on a Roger RT 5880 substrate with a relative dielectric constant 2.2 with a total dimension of 35×32.5×0.8 mm³. The proposed design is simulated using CST software, ensuring accurate calculations and performance evaluation.

Research Paper
A Study of IoT-Based Monitoring and Controlling Systems for Diesel Electrical Generators
PDF Full Text
Abstract

Diesel electrical generators are essential for providing reliable backup power during grid outages, ensuring the continuous operation of critical services such as hospitals, industries, and communication systems. These generators require instantaneous monitoring and control to optimize their performance and longevity. The Internet of Things facilitates efficient monitoring and enables remote control with a faster response time than human intervention, thereby helping to prevent potential damage or system failures. This research introduced the Internet of Things technology and its general architecture. The study first presented an abstract framework of IoT-based monitoring and controlling technology, divided into three layers: perception, network, and application. It then discussed the terminology related to electrical generators, the parameters monitored, and their operational environments. In addition, the advantages and challenges associated with integrating it with electrical generators were discussed. Finally, the research reviewed and analyzed several practical applications and case studies integrating IoT with diesel electrical generators, highlighting key challenges and proposing solutions. This work provided theoretical and practical insights into IoT-based monitoring and control systems for electrical generators.

Research Paper
CAPTCHA Mechanism to Protect User Information on Online Platforms
PDF Full Text
Abstract

CAPTCHA, which stands for Completely Automated Public Turing Test to Tell Computers and Humans Apart, is a commonly employed security measure to distinguish between humans and computers. The Turing Test, designed to guarantee network security, is the foundation of this security technique. Usability is a crucial concern that can prevent human users from engaging in laborious and time-consuming tasks. When designing CAPTCHA, security and usability must be addressed simultaneously. When designing CAPTCHA, it is crucial to address security and usability simultaneously. A concerted effort is required to protect online data and guarantee privacy and security. The personal information of Internet users remains susceptible to theft. This study uses an information extraction technique called CAPTCHA to investigate the hazards associated with violating user privacy. It is a highly harmful process due to hacking, theft, unauthorized reuse, and the breach of user information. This study proposes a privacy preservation system employing concurrent encryption techniques, multilateral security computing, and zero-knowledge proof. The objective is to create a system that allows for uncomplicated and secure puzzle-solving using dice gas. CAPTCHA limits access to users' information. In the overview and application of evidentiary measurable methods, we can draw significant conclusions about the more extensive client group's discernments and encounters with CAPTCHA as a privacy-preserving component.

Review Paper
In-Depth Review For Evaluating Power Usage of Solar Cells Over Their Entire Lifespan
PDF Full Text
Abstract

Solar cells play a vital role in renewable energy systems, and ongoing research is dedicated to enhancing their power efficiency and longevity. Advancements in perovskite solar cells, particularly in power conversion efficiency (PCE), have shown significant progress, confirming its viability as a technology. Perovskite solar cells have achieved power conversion efficiency (PCE) levels of up to 25.5%, comparable to conventional photovoltaic technologies like silicon, gallium arsenide, and cadmium telluride. The substantial enhancement in power conversion efficiency figures over the last decade has shown a remarkable advancement in the efficiency of perovskite solar cells. This study examines the trajectory of perovskite solar cells in becoming economically feasible and generally embraced as a critical renewable energy technology. The advancement of flexible and wearable solar cells, together with miniature solar-powered sensors, has increased the efficiency of solar cell power production. Perovskite solar cells have shown a specific power of 23 W/g, much higher than traditional silicon or gallium arsenide solar cells. Further research is needed to address the challenges related to perovskite solar cells' stability and power conversion efficiency. Perovskite solar cells integrated with energy storage units have the potential to enhance the overall efficiency of the system. This study discusses an approach to improve the efficiency of novel solar cells, specifically focusing on lead-free tin-based perovskite solar cells and tandem solar cells. The advancement of technology in thin films, such as hybrid nanocomposite thin films and quantum dot-sensitive solar cells, has the potential to improve the efficiency of solar cells. The primary outcome of this study is derived from the following inference: incorporating plasmatic nanostructures into thermal energy systems will enhance their efficiency and sustainability by integrating solar energy.

Review Paper
Damage to Limestone Exposed to High Temperatures - A Review
PDF Full Text
Abstract

Previous studies showed that fire incidents cause a considerable deterioration of limestone samples' engineering and physical properties. Various laboratory tests were used in previous studies to investigate the properties of limestone. These tests included destructive and non-destructive tests like the hammer test, ultrasonic pulse velocity test, water-capillary rise test, and water transfer properties test, as well as destructive tests like the unconfined compression test and Brazilian tensile test. The stones of buildings exposed to fire are occasionally assessed on the site. This study analysed the physical and mechanical changes that occurred to the limestone samples when subjected to high temperatures, the damage mechanism, and laboratory or field damage assessment. This study also includes a review of the most significant studies that looked at how alternative cooling techniques—rapid water cooling or gradual air cooling—affect stone samples subjected to high temperatures and compared the behaviour of the samples in each scenario

Review Paper
A Comprehensive Review of Hybrid Photovoltaic-Thermoelectric Systems for Enhanced Solar Energy Utilization
PDF Full Text
Abstract

These systems show great promise by converting waste heat from photovoltaic modules into additional electrical power. The study analyzes the performance and efficiency of the hybrid PV-TEG systems under varying conditions, such as different solar concentration ratios, cooling methods, and materials. While these innovations promise to improve system efficiency, the review also identifies several challenges, including increased thermal resistance, higher system costs, and the minimal temperature difference across the TEG, which significantly limits its performance. This limitation, where the temperature differential is often too small to be effectively harnessed, reduces the TEG's overall efficiency and hinders the integrated system's potential gains. The review underscores the need for urgent and extensive research to develop optimized design configurations, durable mathematical models, and further experimental validation to ensure the practical viability of these systems under diverse environmental conditions. Despite these challenges, the potential of PV-TEG systems to revolutionize solar energy technologies is undeniable.PV-TEG performance is intricately linked to environmental conditions: higher solar radiation boosts efficiency, but increased ambient temperatures reduce it. TEGs often hinder PV cooling, yielding minimal efficiency gains. Non-uniform heat and low-temperature differences across TEGs further decrease performance. While hybrids can improve power conversion, high costs limit feasibility. However, with strategies such as enhancing solar concentration, using effective cooling methods like water or nanofluids, and advanced materials like phase change materials, the efficiency and reliability of these systems can be significantly improved

Review Paper
Procedures of exploitation passive techniques to boost thermal performance in circular tube heat exchangers: a comprehensive review
PDF Full Text
Abstract

Heat exchangers are considered essential parts in many industrial applications. The construction process for heat exchangers is completely complex because accurate measurements of the penalty of pressure-drop and the rate of heat transfer are needed. Designing a compact heat exchanger with a high heat transfer rate, while utilizing the least amount of pumping power, is the main design challenge. The most recent investigations (including experimental results, numerical models, and analytical solutions) in the field of circular tube heat exchangers in general, and twisted tapes and wire coils in particular, are covered in this review article, which has more than 90 references. The enhancement techniques in heat exchangers tubes can generally be separated into three groups: active, passive, and hybrid (compound) approaches. This article reviews the literature on advancements made in passive enhancement approaches, with a specific focus on two types of passive promoters that employ twisted tapes and wire coils. The main contribution of this research is to highlight the behavior and structure of fluid flow and the heat transfer features for the twisted tapes and the wire coils. It also explains how these passive promoters can be used in circular tube heat exchangers to improve hydrothermal performance. Where, the installation of wire coils and twisted tapes considerably alters the flow pattern and aids in the improvement of heat transfer. Where, comprehending the behavior of fluid flow is crucial and contributes to the enhancement of heat transfer. Twisted tapes are less effective in turbulent flow than wire coils because they obstruct the flow, which results in a significant pressure reduction. When it comes to turbulent flow, the thermohydraulic performance of twisted tapes is lower to that of wire coils.

Review Paper
Improvement of the soft soil by cement column: Review Study
PDF Full Text
Abstract

Deep mixing technology is used to improve the engineering properties of soil. In this review, previous studies on the properties and problems of weak soils were collected and explained, focusing on silty soils found globally and locally. The study also includes a discussion of physical and chemical improvement methods, specifically (cement columns). The advantages of deep mixing technology are also covered from an engineering and economic point of view, as well as its relationship to the environmental impact, as it is one of the sustainable development techniques due to its use of environmentally friendly materials. In addition, one of the objectives of this research is to study the methods of adding cement, whether in the form of powder (dry method) or mortar (wet method). A comparison was made between them to clarify the advantages and disadvantages. It was found that what distinguishes the use of the dry method from the wet method is that the former is more common. The method's effectiveness depends on the soil's moisture content, so the technique is ineffective in soils with less than 30% water content. As cement hydration produces a cementitious gel (CSH) that binds soil particles together, leading to early strength gain, pozzolanic reactions cause increased shear strength and decreased soil compressibility. Finally, some recommendations are included in this article to understand the behavior of cement columns in improving soil and avoiding problems

Review Paper
Smart Prosthetics Controller Types: Review
PDF Full Text
Abstract

Advanced prosthetics are a crucial aspect of rehabilitation technology and are receiving increased attention globally. Approximately 2 million people require prosthetic limbs, presenting opportunities for enhancing their quality of life. State-of-the-art technologies such as realistic arms and myoelectric prostheses are gaining popularity. Progress in sensor technology, artificial intelligence, and materials has driven the field forward. Various types of controllers, including direct, pattern recognition, and proportional-derivative, have been developed. Integration of material science, computer science, artificial intelligence, and neurology has facilitated controller advancements. Techniques like targeted muscle reinnervation and Osseo integrated prostheses offer improved surgical options. Gesture recognition technologies and intelligent sensors are enhancing hand control. Future advancements will involve machine learning, artificial intelligence, and sensing techniques, while ethical concerns must be addressed. Advanced myoelectric prostheses, also known as myocontrolled or lower-limb micromod investigative prostheses, have a patient acceptance rate of 75% to 80%. However, while these methods offer advantages, there are also drawbacks. Integrating different types of controllers for these smart prostheses and enhancing the overall device's strength and robustness will have a significant impact. This discussion focuses on various types of smart prosthetic controllers, dividing muscle activity into extracellular myoelectric potential and EEG signals