Diesel electrical generators are essential for providing reliable backup power during grid outages, ensuring the continuous operation of critical services such as hospitals, industries, and communication systems. These generators require instantaneous monitoring and control to optimize their performance and longevity. The Internet of Things facilitates efficient monitoring and enables remote control with a faster response time than human intervention, thereby helping to prevent potential damage or system failures. This research introduced the Internet of Things technology and its general architecture. The study first presented an abstract framework of IoT-based monitoring and controlling technology, divided into three layers: perception, network, and application. It then discussed the terminology related to electrical generators, the parameters monitored, and their operational environments. In addition, the advantages and challenges associated with integrating it with electrical generators were discussed. Finally, the research reviewed and analyzed several practical applications and case studies integrating IoT with diesel electrical generators, highlighting key challenges and proposing solutions. This work provided theoretical and practical insights into IoT-based monitoring and control systems for electrical generators.
The most popular evolutionary search techniques are genetic algorithms (GAs). Even though they are frequently used to solve control engineering problems, they are currently not a common tool in the control engineer's toolbox. This may be due in part to the fact that there are currently few general overviews of the employment of GAs for control engineering problems, and that they are often reported on at computer science conferences rather than conferences for control engineers. This review study is intended to assist researchers and practitioners in identifying prospective research issues, potential solutions, as well as advantages and disadvantages of each technique. This study gives a brief overview of contemporary a Genetic Algorithm (GA) in control systems. Additionally, offers a number of control techniques used with the GA that have undergone extensive research. The conclusion of this study listed in a table to show the effectiveness of GA in various control technique and which field didn’t used till the time of preparing this review.
The detection of faults in electronic circuits is crucial to ensure the proper performance and reliability of electronic applications that utilize these devices. This work discovers, for the first time, that a direct tester board for fault diagnosis can be used not only for the intended measurement of current and voltage but also for studying the potential development of these magnitudes in inaccessible locations, as it detects register transfer level signals through oscilloscopes with low acquisition speeds. The experimental analysis carried out combines the use of commercial software with spatial distribution tracking and the exploitation of the sizes of network links in their computer graphical representation. The proper detection of malfunctions in electronic systems is crucial for enhancing their performance and reliability. We intend to explore the troubleshooting of analog electronic systems, for which we use wide-band direct tester boards. To evaluate its performance in routine practice, we perform experimentation using two different analog circuits designed. They consist of conventional operational amplifiers and element modeling based on equivalent resistance-capacitance networks. Given the procedure followed, commercial programs were used. Special mention should be made of the conclusion matrix, which is interesting when selecting suitable diagnostic parameters. The effectiveness of direct measurement based on integrated probes in the two projects, which allowed for fault insertion, was also confirmed. The results and discussions were enriched by the summarized experimental test report. The work concludes with a reflection on the relationship between this work and the existing state of the art, as well as the new challenges posed by international researchers.
In this article, an experimental study of the single-pass hybrid (PV/T) collector is conducted in the climatic conditions of Fallujah city, where the experimental results are compared with a previous research to validate the results. The effect of changing the angle of inclination of the hybrid collector (PV/T) and its effect on the electrical power in the range (20°-50°) is studied. The optimum angle of the collector is found to be 30°, which gives a maximum electrical power of 58.8 W at average solar radiation of 734.35 W/m2. In another experimental study with different air flow rates ranged from 0.04 kg/s to 0163 kg/s, where it is found that the maximum electrical power of 57.66 W at an air flow rate of 0.135 kg/s, while the maximum thermal efficiency reaches 33.53% at an air flow of 0.163 kg/s at average solar radiation of 786 W/m2.
This study assessed the temporal and spatial water quality variability to reveal the characteristics of the Shatt Al-Arab River, Basrah, Iraq. A total of 14 water quality parameters (water temperature (T), pH, electrical conductivity (EC), Alkanets (Alk), total dissolved solids (TDS), turbidity (Tur), total hardness (TH), calcium (Ca), magnesium (Mg), chloride (Cl), sulphate (SO4), total suspended solids (TSS), sodium (Na), and potassium (k)) were analyzed Use of multivariate statistical methods in a total of three stations for the period 2016-2017. In this study was use a statistical approach to determine the water quality using the Pearson Correlation Index (PCI), Principal component analysis (PCA), and Factor Analysis (FA) were used to analyze the data. Main water pollutant sources were wastewater from agricultural drainage and industrial wastewater. Significant relationships recorded between the investigated parameters based on the results of PCI, at the 0.01 and 0.05 significance levels. Per the FA results, 77.1 % of the total variance explained by two factors.
Advanced prosthetics are a crucial aspect of rehabilitation technology and are receiving increased attention globally. Approximately 2 million people require prosthetic limbs, presenting opportunities for enhancing their quality of life. State-of-the-art technologies such as realistic arms and myoelectric prostheses are gaining popularity. Progress in sensor technology, artificial intelligence, and materials has driven the field forward. Various types of controllers, including direct, pattern recognition, and proportional-derivative, have been developed. Integration of material science, computer science, artificial intelligence, and neurology has facilitated controller advancements. Techniques like targeted muscle reinnervation and Osseo integrated prostheses offer improved surgical options. Gesture recognition technologies and intelligent sensors are enhancing hand control. Future advancements will involve machine learning, artificial intelligence, and sensing techniques, while ethical concerns must be addressed. Advanced myoelectric prostheses, also known as myocontrolled or lower-limb micromod investigative prostheses, have a patient acceptance rate of 75% to 80%. However, while these methods offer advantages, there are also drawbacks. Integrating different types of controllers for these smart prostheses and enhancing the overall device's strength and robustness will have a significant impact. This discussion focuses on various types of smart prosthetic controllers, dividing muscle activity into extracellular myoelectric potential and EEG signals
Switched reluctance motor (SRM) is an electric motor works based on the reluctance torque produced due to the variation of the rotor pole position with respect to stator poles. This paper adopts a thermal analysis on a 4-phase, 8/6 pole, 550W, SRM. Lumped parameters thermal network method(LPTN) is used in this analysis based on a combination of RMXprt/Motor-CAD software, in two- dimensional(2D), steady-state, with different cooling methods, and with different loading conditions. Motor losses like core losses, copper losses, and mechanical losses are regarded as the heat sources in SRM which are calculated by RMXprt software. The thermal analysis achieved by Motor-CAD includes displaying the temperature distribution on different motor parts like stator winding, stator poles, stator yoke, rotor poles, rotor yoke, shaft, covers, and housing. The analysis results showed the increasing temperature distribution on different motor parts with increasing motor loading conditions. Also, this temperature distribution is recorded using three different cooling methods. The comprehensive thermal analysis applied in this work will assist the motor designer in choosing a better motor thermal design without needing to produce and test costly prototype motors.
The field of image processing has several applications in our daily life. The image quality can be affected by a wide variety of deformations during image acquisition, transmission, compression, etc. Image compression is one of the applications where the quality of the image plays an important role since it can be used to evaluate the performance of various image compression techniques. Many image quality assessment metrics have been proposed. This paper proposes a new metric to assess the quality of compressed images. The principle idea of this metric is to estimate the amount of lost information during image compression process using three components: error magnitude, error location and error distribution. We denote this metric as MLD, which combines the objective assessment (error magnitude) and the subjective assessment (error location and error distribution). First, the metric is used to estimate the quality of compressed images using the JPEG algorithm as this is a standard lossy image compression technique. Then, the metric is used to estimate the quality of compressed images using other compression techniques. The results illustrate that the proposed quality metric is correlated with the subjective assessment better than other well-known objective quality metrics such as SSIM, MSE and PSNR. Moreover, using the proposed metric the JPEG2000 algorithm produces better quality results as compared to the JPEG algorithm especially for higher compression ratios
This work presents a compact reconfigurable antenna based on fractal geometry. The investigation discusses the challenges of lower antenna gain and bandwidth, critical for efficient data propagation in 5G systems, particularly for low-profile devices. Its goal is to develop a small, multiband antenna capable of operating in all current and future 5G bands and improve bandwidth and gain for mm-wave and sub-6 GHz applications. The proposed design covers the sub-6 band (2.8, 3.9, 4, 6.2) GHz and the mm-wave band (24.4, 27.1, 28.5, 29.3, 30.6, 33.9, 34.6, 35.2, 38.8, 44.4, 45.1, 59.7, 61.5, 62.3, 65.2, 67.4 and 69.5) GHz with S11 less than -10 dB. A maximum gain of 12.8 dB and a radiation efficiency of 94% are achieved. A partial ground plane with a 50 Ω feed line is used in this design. The antenna is printed on a Roger RT 5880 substrate with a relative dielectric constant 2.2 with a total dimension of 35×32.5×0.8 mm³. The proposed design is simulated using CST software, ensuring accurate calculations and performance evaluation.
The present research is devoted to solve the problem of high energy consumption by air conditioners in summer. In order to eliminate domestic electricity for cooling purposes and rely directly on solar energy isolated from the grid connection and increases the performance of the solar panel by using front water spray cooling system for the panel, and by using Adruino as controller to control the cooling system. The experimental system setup arranged in Iraq at Al-taje site during the summer season at a room. The proposed system consists of an array of photovoltaic, battery used to store power, PWM charge controller, and DC air cooler, Adruino. During the examination of the system, The enhancement of the solar panel has a positive effect on long-term batteries and improves the battery life by which the charge and discharge when combined with a direct photovoltaic air conditioning system without refrigeration. Excess power generated from the PV panels is storage in the batteries, which make the system is the most familiar with Iraq's summer conditions
Flow of crude oil in pipelines suffers from a problem of fluid flow pressure drop and high energy consumption for fluid pumping. Flow can be enhanced using either viscosity reduction or drag reduction techniques. Drag reduction (DR) is considered as a most effective and most applicable method. The technique contributes in reducing the frictional energy losses during the flow by addition of little amounts from drag reducing agents. The present work focuses on preparation and application of a new natural and low cost material derived from palm fiber (PF) that has been tested as a drag reducing agent (DRA) for crude oil flow enhancement. This objective has been achieved through designing and constructing of an experimental rig consisting of: a crude oil pipe, oil pump, pressure sensors, solenoid valve and programmable logic control. The additive material (PF) is prepared with different diameters (75µm, 125µm, 140µm) and tested with different concentrations as: 100, 200, 300, 400, and 500 mg/L for reducing the drag inside the oil pipe. The experimental results showed that the fiber with 125µm diameter and 100ppm is the best where the percentage of drag reduction reached 43%. Furthermore, the results of this work proved that PF is an efficient and low cost DRA that can be applied successfully in crude oil pipelines as well as its contribution in the waste management.
The universal motor, versatile and capable of running on both AC and DC sources, is utilized in various household appliances and power tools. This paper presents a featured methodology for analyzing a universal motor (UM) that does not have design data by extracting it via reverse engineering. These gained data were used to model the motor by Maxwell program and analyzing it by finite element method (FEM). Adopting the Maxwell program's drawing capability to design the square-shaped stator of a universal motor not part of the program library will also enable the Maxwell program to be widely used and unrestricted to use with particular motor designs. After modeling and solving the motor model, the performance characteristics of UM when operated with alternating current (AC) and direct current (DC) power supplies were investigated. The UM simulation results were compared with test results with good agreement. The success of a proposed methodology paved the way for the analysis of any electric motor included in the Maxwell program, even if this motor does not have design data.
This paper presents a method for controlling the speed of a DC motor that is energized individually by utilizing a DC-DC Buck converter that is fed from a DC source. It can be easily controlled with the help of different types of DC-DC converters. This project was introduced a study and analyses of the buck DC to DC converter with PID controller cascaded with DC motors which is simulated in MATLAB. The required speed of the DC motor can then be obtained by giving a variable regulated voltage to the armature of the DC motor. A controller of the proportional-integral type is utilized so that the user can adjust both the amount of current flowing through the DC motor as well as the rate at which it rotates. These controllers allow for a quick control response. In addition to that, this paper presents a Simulink model for a DC motor that was created with Matlab Simulink. The purpose behind the development of the current and speed controller was to achieve stable and high-speed control of the DC motor. The final step is the display of the simulation results for the proposed system, which show that they are consistent with the expected results. This paper shown the DC motors was able to reach the necessary speed within a few attempts; however, as the load rose, the settling time increased as well.
These systems show great promise by converting waste heat from photovoltaic modules into additional electrical power. The study analyzes the performance and efficiency of the hybrid PV-TEG systems under varying conditions, such as different solar concentration ratios, cooling methods, and materials. While these innovations promise to improve system efficiency, the review also identifies several challenges, including increased thermal resistance, higher system costs, and the minimal temperature difference across the TEG, which significantly limits its performance. This limitation, where the temperature differential is often too small to be effectively harnessed, reduces the TEG's overall efficiency and hinders the integrated system's potential gains. The review underscores the need for urgent and extensive research to develop optimized design configurations, durable mathematical models, and further experimental validation to ensure the practical viability of these systems under diverse environmental conditions. Despite these challenges, the potential of PV-TEG systems to revolutionize solar energy technologies is undeniable.PV-TEG performance is intricately linked to environmental conditions: higher solar radiation boosts efficiency, but increased ambient temperatures reduce it. TEGs often hinder PV cooling, yielding minimal efficiency gains. Non-uniform heat and low-temperature differences across TEGs further decrease performance. While hybrids can improve power conversion, high costs limit feasibility. However, with strategies such as enhancing solar concentration, using effective cooling methods like water or nanofluids, and advanced materials like phase change materials, the efficiency and reliability of these systems can be significantly improved
In this article, an experimental study of the single-pass hybrid (PV/T) collector is conducted in the climatic conditions of Fallujah city, where the experimental results are compared with a previous research to validate the results. The effect of changing the angle of inclination of the hybrid collector (PV/T) and its effect on the electrical power in the range (20°-50°) is studied. The optimum angle of the collector is found to be 30°, which gives a maximum electrical power of 58.8 W at average solar radiation of 734.35 W/m2. In another experimental study with different air flow rates ranged from 0.04 kg/s to 0163 kg/s, where it is found that the maximum electrical power of 57.66 W at an air flow rate of 0.135 kg/s, while the maximum thermal efficiency reaches 33.53% at an air flow of 0.163 kg/s at average solar radiation of 786 W/m2.
Solar cells play a vital role in renewable energy systems, and ongoing research is dedicated to enhancing their power efficiency and longevity. Advancements in perovskite solar cells, particularly in power conversion efficiency (PCE), have shown significant progress, confirming its viability as a technology. Perovskite solar cells have achieved power conversion efficiency (PCE) levels of up to 25.5%, comparable to conventional photovoltaic technologies like silicon, gallium arsenide, and cadmium telluride. The substantial enhancement in power conversion efficiency figures over the last decade has shown a remarkable advancement in the efficiency of perovskite solar cells. This study examines the trajectory of perovskite solar cells in becoming economically feasible and generally embraced as a critical renewable energy technology. The advancement of flexible and wearable solar cells, together with miniature solar-powered sensors, has increased the efficiency of solar cell power production. Perovskite solar cells have shown a specific power of 23 W/g, much higher than traditional silicon or gallium arsenide solar cells. Further research is needed to address the challenges related to perovskite solar cells' stability and power conversion efficiency. Perovskite solar cells integrated with energy storage units have the potential to enhance the overall efficiency of the system. This study discusses an approach to improve the efficiency of novel solar cells, specifically focusing on lead-free tin-based perovskite solar cells and tandem solar cells. The advancement of technology in thin films, such as hybrid nanocomposite thin films and quantum dot-sensitive solar cells, has the potential to improve the efficiency of solar cells. The primary outcome of this study is derived from the following inference: incorporating plasmatic nanostructures into thermal energy systems will enhance their efficiency and sustainability by integrating solar energy.
Matrix converters (MCs) have attracted significant interest and found extensive applications across multiple industries owing to their desirable characteristics. These include the capability to produce sinusoidal currents at both input and output, substantial size reduction, and enhanced reliability by minimizing significant passive components. This paper explores the potential of MC technology as a viable alternative to conventional AC-DC-AC converters in industrial applications. It discusses recent advancements in MC structural configurations, modulation/control algorithms, and multiphase structures and control systems. The paper offers an in-depth review of modern industrial uses of MC technology. It also delves into different methods for managing induction motors, particularly the DTC (Direct Torque Control) approach. The study explores the intricacies of DTC and its relationship with SVM. The primary research objective is to examine the performance of an IM when operated with an SVPWM inverter, focusing on harmonic analysis of voltages and currents. Various PWM methods regulate the voltage and frequency supplied to the IM. Sinusoidal Pulse Width Modulation (SPWM) and SVPWM are the two most commonly used 3-phase Voltage Source Inverter strategies. The growing adoption of SVPWM is driven by its ability to reduce harmonic content in voltage and enhance the fundamental output voltage of the IM. Consequently, this study models a DTC-SVM theory-driven IM using MATLAB/SIMULINK to control the speed of induction motors. The following values were calculated for the system: Quality factor=2.236, Damping ratio=4.45, and the cut-off frequency (fc=355.88H).
Photovoltaic cells are one of the renewable energy sources that have been employed to produce electrical energy from solar radiation falling on them, but not all incident radiate will produce electrical energy, part of those radiate cause the panel temperature to rise, reducing its efficiency and its operational life, unless an attempt is made to employ one of the traditional cooling methods or innovating other methods to cooling it to reduce this effect, which it represented in the active and passive cooling method. In fact, it is difficult to compare the active method with the passive method, as each method has its Advantages and disadvantages that may suit one region without another. But in general, there are basic factors through which at least a comparison between the two methods can be made. Relatively the passive method is less expensive, in addition to no need for additional parts such as pumps and controllers, there is no energy consumption because it does not require power. But it is less effective and efficient than the active method, while the active method has the ability to disperse the heat higher than the passive method. However, it necessitates the use of electricity and is frequently costlier than the passive strategy. In this review, the most common active and passive cases were reviewed, and the pros and cons of each case are summarized in discussion due to the difficulty to list them. The review recommends that future studies should focus on active water cooling and heat-sink, both of which are viable cooling strategies.
The extensive global competition between companies and the development of new industrial technologies have greatly contributed to the current competitive conditions Like industrial companies, customers demand high quality products, low prices and better performance. This fierce competition has led to concerns about improved product design. This development is based on GQFD. Model of this developed Water pump is employed by CAD solid model (version 7). In order to achieve competition and high quality and high performance in the Iraqi market. GQFD demonstrates the balance between product development and environmental protection. Used a water pump for a home air cooler as a case study. Data is collected and distributed using personal interview methods and questionnaire forms to indicate customer requirements. The data is then analyzed using Pareto chart and AHP to prioritize customer needs. These priorities are then placed in house of quality and matrix of relationships between customer requirements and technical characteristics is established. The product has been developed from electrical to mechanical, in addition to using accumulated, stored and recycled materials; it also saves 20% of energy, thereby combining energy reduction with the use of damaged materials and their re-entry into work. As a result, the cost of pump manufacturing will decrease
The antenna is a Modified Broadband Butterfly Antenna (MBBA). The technical parameters of such systems are heavily influenced by the qualities of the antenna feed devices. The aperture theory of antennas uses the representation of the radiation field of the antenna as a superposition of the fields of elementary sources, characterized by their type and amplitude-phase spatial distribution. The radiation field of an antenna of finite dimensions is a superposition of inhomogeneous spherical waves emitted by the antenna elements. This paper is primarily the study process, Radiation models were calculated using the model of the cavity plates, Simple Green model, and the strict commercial Electromagnetic Simulator. The modified active rectangular patches with the Gann diode were combined into arrays of E and H plane. Calculated and measured results for these two active arrays the beam scanning, the possibilities have been demonstrated for both arrays. The results of an electrodynamics numerical simulation were obtained. Broadband and multiband radio systems have already found widespread practical applications by utilizing basic antenna parameters and characteristics.
Turbo codes have been deployed in many cutting-edge technologies because they can achieve very high coding gains. Turbo decoders deploy at least two Soft-Input-Soft-Out (SISO) decoders, which operate iteratively to incorporate their results to conclude the output. The soft outputs from the used constituent SISO decoders develop gradually along the iterations. This development is studied and analyzed in this work to understand the dynamics leading to the results. Histograms statistically group and visualize the soft results for further analysis and study. A method is proposed to evaluate the decoding performance based on the density of the values of the soft outputs within the histogram. Results show that the performance is inversely related to the ratio of the values of the soft outputs within the near-zero bins within the histogram. The proposed method can be deployed at the decoder to provide an early indication of the reception and whether it has the potential to be correctly decoded or not. This early decision can save the decoding resources.
Designing an integrated communications system with efficient features is important to researchers and designers. This paper deals with a review of the most important technologies and applications that combine solar cells and communication systems such as Li-Fi technology and its principle of operation, which is a wireless system in which the optical signal is used as a carrier signal as an alternative to the traditional radio frequencies used in Wi-Fi networks, where Li-Fi relies on LED to transmit data, and at high speeds that exceed Wi-Fi technology. Solar Power Satellite (SPS) technology where the satellite is placed in a geostationary orbit in the equatorial plane. As well as the application of photovoltaic solar cells in the SOLPLANT planar antenna, and the replacement of the radiating element of the antenna with a solar cell. The solar cell can transmit and receive electromagnetic signals as well as generate direct current and can be used as antennas either as a single solar cell or group cells and has wide applications in wireless, mobile, Bluetooth and satellite systems. The solar cell has also been applied in Micro strip antenna called Solan , where the solar cell antenna can be considered as a platform for many communication applications and can also be adopted as a radio frequency transmitter and receiver. As well as the design of many antennas integrated with solar cells and compatible with the 5G communication system , in addition to the presence of many applications that combined smart phones and solar cells. This study showed that these technologies and applications provided clean, safe, high-efficiency, high-speed, data-transferring communication systems with low cost.
A gradual change in the state and properties of the oil transformer due to aging, which generally leads to break down. Aging of the mineral oil cause permanent harmful change of the ability insulation system. Aging of the mineral oil and water content of paper insulation are simulated at the laboratory by putting the samples of the oil and pieces of insulation paper in a rig (transformer manufactured) and exposed to different temperatures (20Co, 40Co, 60Co, 80Co) for specific durations of time to analysis and improve the performance of the transformer. In this research, the electrical and physical characteristics for the mineral oil and paper insulation have been studied and then repeated by the addition of different concentration of Nanoparticales (ZnO) (0.01, 0.03, 0.05, 0.07)gm/ml then compared with the electrical properties of the pure mineral oil and paper insulation without (ZnO) nanoparticales
This paper proposes an efficient algorithm for fast computation of the inverse real-valued discrete Fourier transform (IRDFT) using the decimation in frequency (DIF) approach. The proposed algorithm represents a direct method with a new implementation for fast computing of IRDFT. The algorithm derivation is based on the basic principles of the Cooley-Tukey algorithm with the divide and conquer approach and utilizes the advantage of conjugate symmetric property for the discrete Fourier transform (DFT) to remove all redundancies that appear when DFT deals with real data. The analyses of the proposed algorithm have shown that the arithmetic number has reached a minimum, therefore the structure of the developed algorithm possesses the desired properties such as regularity, simplicity, and in-place computation. The arithmetic complexity of this algorithm has been compared with the inverse FFT algorithm, and it was found that it needs the least number of multiplications and additions. The validity of the developed algorithm has been verified by reducing the peak-to-average power ratio PAPR in optical-OFDM systems compared with complex FFT. The simulation using MATLAB(R2021a) findings show that the RFFT O-OFDM system reduces PAPR more efficiently than the FFT O-OFDM system. The PAPR exhibits a reduction of approximately 2.4 to 2.75 dB when evaluated at a probability of occurrence of 10-1 in the complementary cumulative distribution function (CCDF) plot.
Our project was divided into two distinct sections, circuit transmitting and receiving ultrasoundWave Based on Laser Light. A Wien Bridge and a Triangle Wave Oscillators used to obtain a sineand a triangular wave, respectively. A comparator circuit which produces Pulse Width Modulation(PWM) that has the same frequency for triangle wave. The PWM was used to drive laserdiode that produced laser light through by MOSFET transistor and received this light by receivingcircuit which consists of a photodiode with resistor as a voltage divider, amplifier circuit to amplifythe signal and filter to get any desired frequency. The main objective of this project primarilywas to realize a transmission-reception system to transfer ultrasound Frequency via Laser withouta guiding medium, using modulation with little quality loss.
Internet-based platforms such as social media have a great deal of big data that is available in the shape of text, audio, video, and image. Sentiment Analysis (SA) of this big data has become a field of computational studies. Therefore, SA is necessary in texts in the form of messages or posts to determine whether a sentiment is negative or positive. SA is also crucial for the development of opinion mining systems. SA combines techniques of Natural Language Processing (NLP) with data mining approaches for developing inelegant systems. Therefore, an approach that can classify sentiments into two classes, namely, positive sentiment and negative sentiment is proposed. A Multilayer Perceptron (MLP) classifier has been used in this document classification system. The present research aims to provide an effective approach to improving the accuracy of SA systems. The proposed approach is applied to and tested on two datasets, namely, a Twitter dataset and a movie review dataset; the accuracies achieved reach 85% and 99% respectively.